Using Algebraic Geometry, second edition

September 15, 2021

Errata:

Page 9, line 4: Replace “$\alpha \cdot w_1$ and $\alpha \cdot w_1$” with “$\alpha \cdot w_1$ and $\beta \cdot w_1$”
Page 18, line 6: “second polynomial” should be “first polynomial”
Page 28, line 4: Replace “last” with “first”
Page 39, line -7: Replace “$V(I) \subset \mathbb{C}^n$” with “$V(I) = \{a \in \mathbb{C}^n : f(a) = 0$ for all $f \in I\}$”
Page 45, part c of Exercise 9: Delete and replace with “Show that $1 = \sum_j (1/p_j(a_j))p_j.$”
Page 46, Exercise 11: Add a new part c of the exercise as follows:

\[h_i(x) = \prod_{j \neq i} \langle x - p_i, p_i - p_j \rangle. \]

Show that $g_i(x) = h_i(x)/h_i(p_i)$ satisfies part b.

Page 54, line 5: Replace “$L(x - \sum_j c_jx^{\alpha(j)} = 0$” with “$L(x^\alpha - \sum_j c_jx^{\alpha(j)} = 0$”
Page 55, line 2 of Exercise 2: Replace “$x^\alpha > x_1^\alpha$” with “$x^\alpha \geq x_1^\alpha$”
Page 55, line 2 of Exercise 3: Replace “let x^α be” with “let $x^\alpha = x_1^{a_1} \cdots x_n^{a_n}$ be”
Page 65, line 7 after the second display: Replace “$i_1 > \cdots > i_l$” with “$i_1 < \cdots < i_l$”
Page 71, lines 4-8 of the proof of Theorem (5.2): Replace “Hence we will only . . . invertible matrix” with “Hence we will only discuss the broad outline of the proof. In the case when I is radical, it is possible to turn the sketch that follows into a rigorous proof.”
Page 75, line -3: Replace “$-\text{rem}(p_{i-1}(t), p_{i-2}(t), t)$” with “$-\text{rem}(p_{i-2}(t), p_{i-1}(t), t)$”
Page 75, line -2: Replace “division of p_{i-1} by p_{i-2}” with “division of p_{i-2} by p_{i-1}”
Page 82, line 2 of Exercise 7: Replace “$\deg(r) < \deg(g)$” with “$\deg(r) < \deg(f)$”
Page 92, line 8: Replace “degrees d_1, \ldots, d_n” with “d_0, \ldots, d_n”
Page 97, lines 21 and line 24: Replace “Theorem (2.6)” with “Proposition (4.7)”
Page 100, line -2: Replace “Theorem (2.6)” with “Proposition (4.7)”
Page 101, part b of Exercise 10, line 2: Replace “Theorem (2.6)” with “Proposition (4.7)”
Page 102, part c of Exercise 11, line 2: Replace “multiplication by $(-1)^n$” with “multiplication by $(-1)^{n-1}$”
Page 102, part d of Exercise 11: Replace “Theorem (3.5)” with “Theorem (3.4)”
Page 106, line 2 of Exercise 8: Replace “total degree 420” with “total degree 210”
Page 107, line 2 of the proof of Proposition (4.7): Replace “$(n-1)!$ ways” with “$n!$ ways”
Page 108, line 2 of Exercise 11: Replace “D_3'” with “D'_2”

Page 109, line 3: Replace “Exercise 10” with “Exercise 11”

Page 113, part d of Exercise 22: Replace part d with “Use part c to show that the determinant in (2.8) vanishes whenever $F_0 = F_1 = F_2 = 0$ has a nontrivial solution.”

Page 120, line 6 after display (5.12): Replace “f” with “\hat{f}”

Page 126, line 8: Replace “f” with “\hat{f}”

Page 131, lines 1 and 2 following second-to-last display: Replace “Exercise 12 of Chapter 2, §4” with “Exercise 12 of Chapter 2, §2”

Page 134, line 2 of Exercise 3: Replace “$(u_0, u_1, u_2, u_3) = (0, 1, 0, 0)$” with “$(u_0, u_1, u_2) = (0, 1, 0)$”

Page 137, line 14: Replace “both these types” with “both types”

Page 138, line -12: Replace “if $N \neq M$ is an ideal in R with $M \subseteq N \subset R$,” with “if $N \not\subset M$ is an ideal in R,”

Page 144, line 3: Replace “$\sum_{n \geq 0} f_n(x)$” with “$\sum_{m \geq 0} f_m(x)$”

Page 143, line 4: Replace “$f_n(x) = \sum_{\alpha \in \mathbb{Z}_2^N \atop |\alpha| = m} c_\alpha x^\alpha$” with “$f_m(x) = \sum_{\alpha \in \mathbb{Z}_2^N \atop |\alpha| = m} c_\alpha x^\alpha$”

Page 143, line 5: Replace the display with $h_m = f_m g_0 + f_{m-1} g_1 + \cdots + f_0 g_m$.”

Page 143, line 7: Replace “n” with “m”

Page 147, part a of Exercise 2: Replace “$V(x^2 - 2x + y^2, x^2 - 4x + 4y^2)$” with “$V(x^2 - 2x + y^2, x^2 - 4x + 4y^2)$”

Page 147, part b of Exercise 2: Replace “$\langle x^2 - 2x + y^2, x^2 - 4x + 4y^4 \rangle$” with “$\langle x^2 - 2x + y^2, x^2 - 4x + 4y^4 \rangle$”

Page 149, line -18: Replace “note that that” with “note that the”

Page 152, line 6: Replace “Proposition (5.9)” with “Proposition (5.15)”

Page 152, line 3 of Exercise 3: Replace “$f_2 = 6y - x^3 + 9x$,” with “$f_2 = 6y - x^3 + 9x = 0,$”

2
Page 152, line 1 of part e of Exercise 3: Replace “Res\((f_1, f_2, y)\)” with “Res\(^y\)(f_1, f_2) as defined in (5.14) of Chapter 3”

Page 152, line 4 of part e of Exercise 3: Replace “Res\((f_1, f_2, x)\)” with “Res\(^x\)(f_1, f_2)”

Page 156, part c of Exercise 10, line 4: Replace “\(A_i \Leftrightarrow f(p_i) = \lambda\)” with “\(A_i \Leftrightarrow f(p_i) = \lambda\)”

Page 160, line –2: Replace “\(\ker(M) \cap \mathbb{Z}_{\geq 0}\)” with “\(\ker(M) \cap \mathbb{Z}\)”

Page 161, line –3: Replace “\(S = \{1 + g : \text{LT}(g) < 1\}\)” with “\(S = \{1 + g : g = 0 \text{ or } \text{LT}(g) < 1\}\)”

Page 163, line 1 of part a of Exercise 5: Replace “let \(h \in A\)” with “let \(h \in \text{Loc}_>(A)\)”

Page 163, line 1 of part b of Exercise 5: Replace “Let \(r \in R\)” with “Let \(r \in \text{Loc}_>(A)\)”

Page 166, lines –20 and –18: Replace “\(t^\alpha > t'^\alpha x^\beta\)” with “\(t^\alpha > t'^\alpha x^\beta\)” (twice)

Page 171, line 3 of part c of Exercise 8: Replace “\(1/(1 + h)\)” with “\(1/(1 + g)\)”

Page 172, line 2 of Exercise 11: Replace “(for local orders)” with “(for degree-anticompatible orders)”

Page 172, line 1 of part a of Exercise 11: Replace “Let > be a local order” with “Let > be a degree-anticompatible order”

Page 193, line –2: Replace “When \(M\) and \(N\) are free modules,” with “When \(M = R^l\) and \(N = R^m\),”

Page 197, line –10: Besides the 1994 paper [PW] by Park and Woodburn, we should also mention two other papers that deal with algorithmic aspects of the Quillen-Suslin result:

Page 199, line 4: “Equivalently, we think” should be “Equivalently, we think”

Page 200, line 18: Replace “one-one” with “one-to-one”

Page 201, line –2 of proof of Proposition (1.11): Replace “\(\sum c_i m_i\)” with “\(\sum c_i f_i\)”

Page 203, line 1: Replace “Let \(\varphi : M \to N\)” with “Let \(\varphi : M \to N\) be an \(R\)-module homomorphism.”

Page 203, line 2 of part a of Exercise 23: Replace “\(\{af : a \in I, f \in M\}\)” with “\(\{\sum_{i=1}^\ell a_i f_i : a_i \in I, f_i \in M\text{ for } i = 1, \ldots, \ell\}\)”.

Page 203, line –16: Replace “We let \(R = k[x, y]\)” with “Let \(R = k[x, y]\), where \(k\) is a field of characteristic different from 2,”

Page 203, lines –9 to –1: Delete and replace with the following:

a. Verify that \(f = (f_1, f_2, f_3)^T = (1, -x/2, -1/2)^T \in R^3\) satisfies \((1 + x)f_1 + (1 - y)f_2 + (x + y)f_3 = 1\).
b. Let I be the 3×3 identity matrix. Verify that the columns g_1, g_2, g_3 of the matrix $I - f \cdot A$ span $\ker A$. Hint: If $A\tilde{f} = 0$, then $\tilde{f} = (I - f \cdot A)\tilde{f}$ is a linear combination of the columns of $I - f \cdot A$.

c. Show that $\{g_1, g_2\}$ is a basis of $\ker A$. (Unfortunately, the result of part c is special to the choice of f made in part a. If f is an arbitrary solution of $A\tilde{f} = 1$, then the first two columns of $I - f \cdot A$ need not give a basis of the kernel.)

Page 204, part b of Exercise 27, line 2: Replace “of f is a nonzero element of R” with “of \tilde{f} is a nonzero element of k”

Page 205, line 5: Replace “show that M” with “then M”

Page 206, line 6: Replace “R^t to R^m” with “R^m to R^t”

Page 206, line 1: Replace “(compare Exercise 6 and the discussion preceding Exercise 7)” with “(compare Exercise 11 and the discussion preceding Proposition (1.10))”?

Page 206, line 3, Replace “column e_2” with “column e_1”

Page 206, line 5, Replace “row 2 column 1” with “row 1 column 2”

Page 210, lines −9 and −8: Replace “(see Exercise 5 below)” with “(see Exercise 11 of §3)”

Page 211, Exercise 1: Replace “Show” with “Assuming conditions a and b, show”

Page 215, line 10: Replace “$M_{M+\ell}$” with “$M_{N+\ell}$”

Page 215, bottom line: Replace“(1.6)” with “(1.5)”

Page 219, part a of Exercise 2, line 2: Replace “(dp, C)” with “(dp, c)”

Page 219, line −5: Replace “letter c” with “letter C”

Page 219, line −3: Replace “lower-case c” with “upper-case C”

Page 219, lines −2 and −1: Replace “(dp, C)” with “(dp, c)”

Page 223, line −5: Replace “$\sum_{k=1}^{s} a_{ijk} g_k$” with “$\sum_{\ell=1}^{s} a_{ij\ell} g_\ell$”

Page 223, line −4: Replace “$a_{ijk} \in R$, and $\mathbf{lt}(a_{ijk} g_k) \leq \mathbf{lt}(S(g_i, g_j))$ for all i, j, k” with “$a_{ij\ell} \in R$, and $\mathbf{lt}(a_{ij\ell} g_\ell) \leq \mathbf{lt}(S(g_i, g_j))$ for all i, j, ℓ”

Page 224, line 12: Replace “Exercise 1” with “Exercise 2”

Page 227, line −2: Replace “$(AG I_t - AB)$” with “$(AD I_t - AB)$”.

Page 229, line 16: Replace “the t vectors” with “the s vectors”

Page 229, line 18: Replace “$1 \leq k \leq t$” with “$1 \leq k \leq s$”

Page 231, line 2: Replace “R^{m+t+s}” with “R^{m+t+s}”

Page 232, line 4 of Exercise 9: Replace “$((a_1, \ldots, a_s) \in R^s$ such that a_1, \ldots, a_s” with “$(a_1, \ldots, a_s) \in R^s$ such that a_1, \ldots, a_s”

Page 237, line −6: Replace “Hence” with “If $s > 1$, then”
Page 237, line -2: Add the sentence “If $s = 1$, then $(1 - a_1)f_1 = 0$. This implies $f_1 = 0$, which contradicts $M \neq 0$."

Page 239, line 1: Replace “matrix of $M/\mathfrak{m}M.$” with “matrix of $M/\mathfrak{m}M$?"

Page 239, line 10: Replace “columns of M” with “columns of A”

Page 239, line 13: Replace “in P/IP” with “in M/IM”

Page 240, line 4: Replace “have have” with “have”

Page 242, line 14: Replace “$m \times 1$ matrix” with “$r \times 1$ matrix”

Page 242, Proposition (4.11): Replace “Q be a local ring, M a finitely generated Q-” with “R be a local ring, M a finitely generated R-”

Page 243, line -16: Replace “$M/\mathfrak{m}M$ Since” with “$M/\mathfrak{m}M$. Since”

Page 245, part c of Exercise 10: Replace “$0 = F_0(M) \subset F_1(M) \subset \cdots \subset F_{s+1} = R$” with “$0 = F_{-1}(M) \subset F_0(M) \subset \cdots \subset F_s = R$”

Page 248, line -9: Replace “Exercise 12” with “Exercise 28”

Page 253, line -6: Replace with “$M = \langle yz - xw, y^3 - x^2z, xz^2 - y^2w, z^3 - yw^2 \rangle$”

Page 254, line 1: Replace with “$M = \text{ideal}(y*z-x*w,y^3-x^2*z,x*z^2-y^2*w,z^3-y*w^2)$”

Page 260, line after second display: Replace “im(φ_2) = Syz(G_1)” with “im(φ_2) = Syz(G_0) = ker(φ_1) in F_1”

Page 260, lines 1 and 2 after second display: Replace “obtain $\varphi_i : F_i \rightarrow F_{i-1}$, where im($\varphi_i$) = Syz($G_{i-1}$) and $G_i \subset R^n$ is a Gröbner” with “obtain $\varphi_{i+1} : F_{i+1} \rightarrow F_i$, where im($\varphi_{i+1}$) = Syz($G_{i-1}$) = ker($\varphi_i$) in F_i and $G_i \subset F_i = R^n$ is a reduced Gröbner”

Page 260, lines 2 and 3 above display (2.5): Replace “the leading terms of the reduced Gröbner basis G_ℓ” with “the reduced Gröbner basis G_ℓ of Syz($G_{\ell-1}$) $\subset F_\ell$ is either empty or its leading terms”

Page 260, display (2.5): Add $\varphi_{\ell-1}$ above the second arrow and put a period at the end of the display.

Page 260, line after display (2.5): Replace “and the leading” with “When $G_\ell = \emptyset$, ker(φ_ℓ) = $\{0\}$ and φ_ℓ is injective. Thus we can extend (2.5) to a free resolution of length $\ell \leq n$ by adding a zero at the left. Otherwise, the leading”

Page 260, three lines below display (2.5): Replace “Syz($G_{\ell-1}$) is a free module” with “$R^n/k\text{er}($\varphi_\ell$) \cong \text{im}($\varphi_\ell$) = ker($\varphi_{\ell-1}$) is a free module”

Page 260, four lines below display (2.5): Replace “we can extend (2.5)” should be “we can replace F_ℓ with the free module ker($\varphi_{\ell-1}$) and extend (2.5)”

Page 263, line 1: Replace “from (1.8)” with “from (1.7)”

Page 263, line 6: Replace “see (1.16)” with “(see (1.14))”

Page 264, Exercise 8: Add the following new part d:
d. Show that \(R^t/M \) is also a free module. Hint: Let \(N \subset R^t \) be the free submodule generated by the standard basis vectors that are not leading terms of elements of \(G \). Use the division algorithm with respect to \(G \) to show that the induced map \(N \to R^t/M \) is an isomorphism.

Page 265, part a of Exercise 11: Replace “of the the” with “of the”

Page 265, part b of Exercise 11, line 2: Replace \((-1) \det(A_i)\), where \(A_i \)” with “\((-1) \det(\mathbf{A}_i)\), where \(\mathbf{A}_i \)”

Page 265, part d of Exercise 11, line -1: Replace “= pB for some \(B \in R^m \)” with “= pC for some \(C \in R^m \)”

Page 267, line 1 of (3.3) Proposition: Replace “be submodule” with “be a submodule”

Page 269, line 1 of Exercise 3: Replace “finitely generated” with “finitely generated graded”

Page 270, line 6: Replace with “\(M = \langle yz - xw, y^3 - x^2z, xz^2 - y^2w, z^3 - yw^2 \rangle \)”

Page 270, line 9: Replace with “\(R(-2) \oplus R(-3)^3 \to R \)”

Page 275, line 2: Replace “\(F_{\ell+2} \xrightarrow{\varphi_{\ell+1}} F_{\ell+1} \)” with “\(F_{\ell+2} \xrightarrow{\varphi_{\ell+2}} F_{\ell+1} \)”

Page 275, line 7: Replace “\(+ c_2\varphi_{\ell-1}(u_m)\)” with “\(+ c_\ell\varphi_{\ell-1}(u_\ell)\)”

Page 275, line 9: Replace “\(i = 2, \ldots, m \)” with “\(i = 2, \ldots, t \)”

Page 279, line 2 of Exercise 14: Replace “\(\psi : G_\ell \to G_{\ell-1} \)” with “\(\psi : G_\ell \to G_{\ell-1} \)”

Page 279, lines 6-7 of Exercise 14: Replace “\(A_{01} = (c_2, \ldots, c_\ell) \)” as in (3.16), and \(A_{10} = (d_2, \ldots, d_m)^T \)” with “\(A_{01} = (c_2, \ldots, c_\ell)^T \)” as in (3.16), and \(A_{01} = (d_2, \ldots, d_m)^T \)”

Page 279, line 10 of Exercise 14: Replace “\(B_\ell = A_{00} - A_{01}A_{11}^{-1}A_{10} \)” with “\(B_\ell = A_{11} - A_{10}A_{00}^{-1}A_{01} \)”

Page 279, line 11 of Exercise 14: Replace “What’s remarkable is that this formula is identical to” with “This formula is a slight variation of the formula in”

Page 289, line 3 of Definition (4.16): “to the minimal” should be “to be the minimal”

Page 290, line 12: Replace “for \(S/J \) to” with “for \(R/J \) to”

Page 293, line 3: Replace “\(\tilde{c} = p_1q_2 - p_1q_2 \)” with “\(\tilde{c} = p_1q_2 - p_2q_1 \)”

Page 293, line -19: Replace “\(\text{GCD}(a_1, \ldots, a_m) = 1 \)” with “\(\text{GCD}(a_1, \ldots, a_m, c) = 1 \)”

Page 297, part a of Exercise 12, line 3: Replace “\(R^G \)” with “\(S^G \)”

Page 297, line -3: Replace “\(R^G \)” with “\(S^G \)”

Page 303, part d of Exercise 25: Replace “parts b, c and d” with “parts b and d”

Page 308, line before Exercise 4: Add a new sentence “We also regard \(Q \) as a face of itself.”

Page 308, line following Exercise 4: Replace “Every face” with “Every proper face”

Page 314, line 3 of Exercise 1: Replace “You already did a special case of this in Exercise 2 of Chapter 3, §2” with “This is a special case of Exercise 2 of Chapter 3, §2”
Page 314, the last row of the matrix in display (2.4): Replace “$c_0 - x$” with “$c_0 - z$”
Page 314, part a of Exercise 2, line 4: Replace “st^2” with “s^2t”
Page 319, line 1 of Exercise 6: Replace “Then” with “Use the bracket notation introduced in Theorem (3.5) of Chapter 3, §3 to”
Page 325, display (3.9): Replace “$F(x_1, \ldots, x_n)$” with “$F(x_1, \ldots, x_N)$”
Page 325, line 1 of proof of Lemma (3.10): Replace “$m = \sum_{i=1}^{n} a_i e_i$” with “$m = \sum_{i=1}^{n} b_i e_i$”
Page 325, line 2 of Exercise 4: Replace “Exercise 3” with “Exercise 7 of §1”
Page 327, line 9: In the statement of Theorem (3.13), replace “$A = \{m_1, \ldots, m_l\} \subset \mathbb{Z}^{n \geq 0}$” with “$A = \{m_1, \ldots, m_l\} \subset \mathbb{Z}^n$”
Page 328, line 11: In two places, replace “x_0, \ldots, x_N” with “x_1, \ldots, x_N”
Page 331, part d of Exercise 11, line 2: Replace “x_1, \ldots, x_n” with “x_1, \ldots, x_N”
Page 331, part d of Exercise 11, line 3: Replace “x_1, \ldots, x_n” with “x_1, \ldots, x_N”
Page 334, line -11: Replace “which is the called” with “which is called”
Page 334, line -10: Replace “If S is subset of” with “If S is a subset of”
Page 339, line 12: Replace “part b” with “part c”
Page 339, line 18: Replace “Exercise 5” with “Exercise 6”
Page 342, line 1: Replace “$\mu \cdot a_Q(\nu) \geq 0$” with “$\mu \cdot a_Q(\nu)/\|\nu\| \geq 0$”
Page 343, 7 lines below display (5.2): Replace “equivalent” with “equivalent to”
Page 352, part e of Exercise 4, line 1: Replace “$d \mapsto d/t$” with “$d \mapsto d/t^8$”
Page 359, line -7: Replace “polyedral” with “polyhedral”
Page 359, line 4 of Definition (6.4): Replace “is a face” with “is either empty or a face”
Page 365, Figure 7.9: The figure is wrong. Here is the correct figure.

Page 373, line 3: Replace “Chapter 2” with “Chapter 3”
Page 416, part b of Exercise 4, line 6: Replace “\(g_3 = (2xy^2 + y^3, 0, 0, y, -y, 0, -2x - y)\)” with “\(g_3 = (2xy^2 + y^3, x^2y + 2xy^2 + y^3, 0, 0, y, -y, 0, -2x - y)\)”

Page 417, part c of Exercise 5, last line: Replace “if \(k \geq 3\)” with “if \(k \geq 4\)”

Page 422, part d of Exercise 8: Replace “\(M(\Delta', r)\)” with “\(M(\Delta, r)\)”

Page 423, line 7: Replace “expression (3.19)” with “expression (3.18)”

Page 425, Exercise 14, line 2: Replace “hereditary complex” with “hereditary simplicial complex”

Page 431, line −6: The left-hand side of the equation should be “\(\{x^2 - y, yz + xz - y^2\}\)”

Page 433, line 1: Replace “that \(w\)” with “that \(w\)”

Page 438, line −18: Replace “is the positive orthant” with “in the positive orthant”

Page 440, third display: Replace “\(\langle \text{in}_{\text{new}}(G_{\text{old}}) \rangle\)” with “\(\langle \text{LT}_{\text{new}}(\langle \text{in}_{\text{new}}(G_{\text{old}}) \rangle) \rangle\)”

Page 440, line −9: In two places, replace “\(q_{j,g}\)” with “\(p_{j,g}\)”

Page 444, line 10: “\(w_t \cdot v_1 = 6\)” should be “\(w_t \cdot v_1 = 11\)”

Page 444, line 14: “\(v_2 = (0, -, -1)\)” should be “\(v_3 = (0, 1, -1)\)”

Page 473, line −3: Replace “\(\langle x_1^{n_1 - 1} - 1, \ldots, x_m^{n_m - 1} - 1 \rangle\)” with “\(\langle x_1^{n_1} - 1, \ldots, x_m^{n_m} - 1 \rangle\)”

Page 474, line 6: Replace “\(\langle x_1^{n_1} - 1, \ldots, x_m^{n_m} - 1 \rangle\)” with “\(\langle x_1^{n_1 - 1} - 1, \ldots, x_m^{n_m - 1} \rangle\)”

Page 496, line 7: Replace “of elements” with “of nonzero elements”

Page 496, line −3: Replace “are verified” with “are satisfied”

Page 502, line 10: Replace “\(x_1^4x_2^4\)” with “\(x_1^3x_2^3\)”

Page 553, first column, line −14: Replace “Faugère, C.” with “Faugère, J.-C.”