Typographical Errors in the Second Edition of

Primes of the Form $x^2 + ny^2$

February 16, 2020

Page v, line −8: The title of §1 should be “FERMAT, EULER AND QUADRATIC RECIPROCITY”

Page 30, first line of (2.21): “15.23” should be “15, 23”

Page 32, line 2 of Theorem 2.26: “not dividing D.” should be “not dividing D,” (the period should be a comma)

Page 48, line −13: “ker(χ) ∈ ($\mathbb{Z}/D\mathbb{Z}$)” should be “ker(χ) ⊂ ($\mathbb{Z}/D\mathbb{Z}$)”

Page 53, line −1: “property” should be “properly”

Page 61, part (a) of Exercise 3.9: “if and only if a, b or ab has order ≤ 2 in G” should be “if and only if a or b has order ≤ 2 in G”

Page 62, line 9: “that Proposition 3.11 and Theorem 3.15 hold for all” should be “that Proposition 3.11 holds for all”

Page 65, part (c) of Exercise 3.20: “$f(\alpha x + \beta y, \gamma x + \delta y)$” should be “$f(\alpha x + \gamma y, \beta x + \delta y)$”

Page 65, lines −2 and −1: “Note also that Lemma 3.25 gives a very quick proof of Exercise 2.27” should be “Note that Lemma 3.25 gives a quick proof of Exercise 2.27(a) for forms of discriminant $-4n$ when $p \nmid n$”

Page 75, line 18: “the second memoir. Gauss” should be “the second memoir, Gauss” (the period should be a comma)

Page 91, lines −4 and −3: “$f_i(x)$ are distinct and irreducible modulo p” with “$f_i(x)$ are monic, and distinct and irreducible modulo p”

Page 104, part (f) of Exercise 5.6: “$p\mathcal{O}_L + f_i(\alpha)\mathcal{O}_K$” should be “$p\mathcal{O}_L + f_i(\alpha)\mathcal{O}_L$”

Page 104, part (f) of Exercise 5.6: In the hint, “$I_1 \cdots I_g \subset p\mathcal{O}_L$” should be “$(p\mathcal{O}_L)^g \subset I_1 \cdots I_g \subset p\mathcal{O}_L$”

Page 105, part (d) of Exercise 5.7: It should be “Prove the description of \mathcal{O}_K given in (5.14)”
Page 125, line -12: “let a be a fractional” should be “let a be a proper fractional”

Page 127, one line above (7.16): “$a \cdot a = \alpha \cdot a[a, \tau]$” should be “$a \cdot a = \alpha \cdot a[1, \tau]$”

Page 133, four lines below (7.26): “$u \in \mathcal{O}$” should be “$u \in \mathcal{O}_K$”

Page 133, line -4: “[b][c]^{-1}$” should be “[±b][c]^{-1}”

Page 138, part (c) of Exercise 7.15, line 4: “dividing by a by c” should be “dividing a by c”

Page 143, line 1: “let f be a positive integer” should be “let $f > 1$ be an integer.

Page 145, second display: “$I_K(m)/H$” should be “$I_K(m)/H$”

Page 146, line 15: “mth of unity” should be “mth root of unity”

Page 151, last paragraph of the proof of Theorem 8.12: The proof has a gap. Weak Reciprocity does not apply to the modulus $p\infty$ since p is odd but Theorem 8.11 with $n = 2$ requires an even modulus. Thus the last paragraph of the proof should be replaced with the following:

To apply Theorem 8.11 when $n = 2$, the modulus must be divisible by 2. Since p is odd, $\zeta_{2p} = -\zeta_p$, so $\mathbb{Q}(\zeta_{2p}) = \mathbb{Q}(\zeta_p)$, and by (8.3) and (8.4), $\text{Gal}(\mathbb{Q}(\zeta_{2p})/\mathbb{Q})$ is a generalized ideal class group for the modulus $2p\infty$. It follows that Weak Reciprocity applies to K/\mathbb{Q} for this modulus. However, we have isomorphisms

$$\left(\mathbb{Z}/p\mathbb{Z}\right)^* \to \left(\mathbb{Z}/2p\mathbb{Z}\right)^* \to I_\mathbb{Q}(2p\infty)/P_{\mathbb{Q},1}(2p\infty),$$

where the first map follows since p is odd (a even $\Rightarrow a+p$ is odd) and the second map sends $[a] \in \left(\mathbb{Z}/2p\mathbb{Z}\right)^*$ to $[a\mathbb{Z}] \in I_\mathbb{Q}(2p\infty)/P_{\mathbb{Q},1}(2p\infty)$ when $a > 0$ (see Exercise 8.7). Composing this map with (8.13) shows that (p^*/\cdot) induces a surjective homomorphism from $\left(\mathbb{Z}/p\mathbb{Z}\right)^*$ to $\{±1\}$. But the Legendre symbol (\cdot/p) is also a surjective homomorphism between the same two groups, and since $\left(\mathbb{Z}/p\mathbb{Z}\right)^*$ is cyclic, there is only one such homomorphism. This proves that

$$\left(\frac{p^*}{q}\right) = \left(\frac{q}{p}\right),$$

and we are done. Q.E.D.
Page 155, lines −18 and −17: “But Exercise 5.9 tells us” should be “But [77, Exercise 4.11(b)] tells us”

Page 159, part (c) of Exercise 8.7: Delete the current part (c) and replace with the following:

(c) Verify the isomorphisms
\[(\mathbb{Z}/p\mathbb{Z})^* \sim (\mathbb{Z}/2p\mathbb{Z})^* \sim I_\mathbb{Q}(2p\infty)/P_{\mathbb{Q},1}(2p\infty)\]
described in the proof of Theorem 8.12.

Page 161, Exercise 8.13, last line: “\(N_{\mathfrak{P}}M = M\)” should be “\(N_{\mathfrak{P}}M = N_{\mathfrak{P}}\)”

Page 161, Exercise 8.16, line 2: “\(\bar{S}_{M/L}\)” should be “\(\bar{S}_{M/K}\)”

Page 161, Exercise 8.16, last line: “of Proposition 8.20” should be “of Proposition 8.20 and Exercise 8.15”

Page 165, line 1: “Lemma 5.21” should be “Corollary 5.21”

Page 167, line 3: “\(\text{Gal}(L/K) \simeq \mathbb{Z}/3\mathbb{Z}\), then “\(\text{Gal}(L/Q) \simeq S_3\)” should be “\(\text{Gal}(M/K) \simeq \mathbb{Z}/3\mathbb{Z}\), then “\(\text{Gal}(M/Q) \simeq S_3\)”

Page 167, line 9: “\(\sigma\) is real” should be “\(\alpha\) is real”

Page 169, line 1: Replace with “If \(\pi = a + bi\) is a primary prime of \(\mathbb{Z}[i]\), then”

Page 169, third display: “\(I_K(6)/P_{K,\mathbb{Z}}(6)\)” should be “\(I_K(6)/P_{K,1}(6)\)”

Page 186, line −1: At the end of the display, “\(z_{\mathfrak{P}}(z)\)” should be “2\(\mathfrak{P}(z)\)”

Page 197, Exercise 10.4, second line of the display: “\(+ \frac{24G_4(L)}{z^2}\)” should be “\(- \frac{24G_4(L)}{z^2}\)”

Page 199, part (b) of Exercise 10.16: “Theorem 5.25” should be “Theorem 5.30”

Page 199, part (c) of Exercise 10.16: In the display, “\[\sum_{f \mid [\mathcal{O}_K:Z[a]]} h(f^2d_K)\]” should be “\[\sum_{f \mid [\mathcal{O}_K:Z[a]]} h(f^2d_K)\]”

Page 203, line −14: “\(\gamma \neq \pm 1\)” should be “\(\gamma \neq \pm I\)”
Page 208, line 10: The display should be
\[q(\sigma\tau) = e^{2\pi i (a\tau + b)/d} = e^{2\pi ib/d} q^{a/d} \]
(two errors in the original)

Page 217, line 12: “some prime ideal of \(\mathcal{O} \)” should be “some prime ideal of \(\mathcal{O}_K \)”

Page 219, line −10: “of class field theory” should be “of complex multiplication”

Page 221, second display: The display should be
\[|b| \leq a \leq c, \text{ and } b \geq 0 \text{ if either } |b| = a \text{ or } a = c. \]

Page 261, line 1 of part (a) of Exercise 12.31: “Prove that \(P = \sqrt{14}(2/\alpha) \) and \(Q = \sqrt{7/2}(\alpha/2) \)” should be “Prove that \(P = \sqrt{14}/\alpha \) and \(Q = \sqrt{7/2}\alpha \)”

Page 268, line 1: “compute \(H_D(X) \)” should be “compute \(H_D(X) \) for most \(D \)”

Page 268, line −15: “compute any \(H_D(X) \)” should be “compute \(H_D(X) \) for any \(D \neq -3k^2, k \text{ odd} \)”

Page 305, display of Exercise 14.7: In two places, “\(x + z \)” should be “\(x + 2 \)” in the denominator