Typographical Errors in the Second Edition of

Primes of the Form $x^2 + ny^2$

June 19, 2022

Page v, line -8: The title of §1 should be "FERMAT, EULER AND QUADRATIC RECIPROCITY"

Page 5, line -18: "elemenary" should be "elementary"

Page 25, line above (2.9): "|b| < a < c" should be " $|b| \le a \le c$ "

Page 26, display (2.12): " $a < \sqrt{(-D)}/3$ " should be " $a < \sqrt{-D/3}$ "

Page 30, first line of (2.21): "15.23" should be "15, 23"

Page 32, line 2 of Theorem 2.26: "not dividing D." should be "not dividing D," (the period should be a comma)

Page 48, line -13: "ker $(\chi) \in (\mathbb{Z}/D\mathbb{Z})^*$ " should be "ker $(\chi) \subset (\mathbb{Z}/D\mathbb{Z})^*$ "

Page 53, line -1: "property" should be "properly"

Page 61, part (a) of Exercise 3.9: "if and only if a, b or ab has order ≤ 2 in G" should be "if and only if a or b has order ≤ 2 in G"

Page 61, part (b)(ii) of Exercise 3.11: Delete the hint.

Page 61, part (b)(iii) of Exercise 3.11: "See also" should be "See the description of $(\mathbb{Z}/2^{a+2}\mathbb{Z})^*$ given in"

Page 62, line 9: "that Proposition 3.11 and Theorem 3.15 hold for all" should be "that Proposition 3.11 holds for all"

Page 62, part (b) of Exercise 3.12: "ker(Φ)" should be "ker(Φ ')"

Page 62, part (a) of Exercise 3.13: "the assigned characters" should be "assigned characters (where n < 0 when D = -4n is positive)".

Page 63, part (e) of Exercise 3.13: Replace the hint with "Hint: prove (2/p) = 1 if and only if $p \equiv 1, 7 \mod 8$. For \Rightarrow , show that p is properly represented by a form of discriminant 8 and use $-2 \equiv 6 \mod 8$. For \Leftarrow , use the forms $2x^2 + xy + ((1-p)/8)y^2$ of discriminant p (when

 $p \equiv 1 \mod 8$ and $2x^2 + xy + ((1+p)/8)y^2$ of discriminant -p (when $p \equiv 7 \mod 8$). Both represent 2.

Page 65, part (e) of Exercise 3.20: " $f(\alpha x + \beta y, \gamma x + \delta y)$ " should be " $f(\alpha x + \gamma y, \beta x + \delta y)$ "

Page 65, lines -2 and -1: "Note also that Lemma 3.25 gives a very quick proof of Exercise 2.27" should be "Note that Lemma 3.25 gives a quick proof of Exercise 2.27(a) for forms of discriminant -4n when $p \nmid n$ "

Page 66, part (c) of Exercise 3.24: "supplementary laws:" should be "supplementary laws for P odd:"

Page 75, line 18: "the second memoir. Gauss" should be "the second memoir, Gauss" (the period should be a comma)

Page 81, Exercise 4.10: "Let π be prime in $\mathbb{Z}[\omega]$ " should be "Let π be prime of $\mathbb{Z}[\omega]$ not associate to $1 - \omega$ "

Page 82, line 2 of Exercise 4.18: " π is prime in $\mathbb{Z}[i]$ " should be " π is a prime of $\mathbb{Z}[i]$ not associate to 1 + i"

Page 91, lines -4 and -3: " $f_i(x)$ are distinct and irreducible modulo \mathfrak{p} " should be " $f_i(x)$ are monic, and distinct and irreducible modulo \mathfrak{p} "

Page 94, line 5: "distinct primes" should be "for distinct primes"

Page 103, line 3 of Exercise 5.2: "it is a finitely generated" should be "it is a nonzero finitely generated"

Page 104, part (f) of Exercise 5.6: " $\mathfrak{p}\mathcal{O}_L + f_i(\alpha)\mathcal{O}_K$ " should be " $\mathfrak{p}\mathcal{O}_L + f_i(\alpha)\mathcal{O}_L$ "

Page 104, part (f) of Exercise 5.6: In the hint, delete the second sentence and replace with "Show that ideals $\mathfrak{a}, \mathfrak{b}$ of \mathcal{O}_L satisfy $\mathfrak{a} \subset \mathfrak{b}$ if and only if $\mathfrak{a} = \mathfrak{b}\mathfrak{c}$ for some ideal \mathfrak{c} . Then apply this to $\mathfrak{p}\mathcal{O}_L \subset I_i \subset \mathfrak{P}_i$."

Page 105, part (d) of Exercise 5.7: It should be "Prove the description of \mathcal{O}_K given in (5.14)"

Page 105, part (c) of Exercise 5.10: Replace the first sentence of the hint with "by part (a) of Exercise 5.1, \mathfrak{p} contains a nonzero integer m, which can be assumed to be positive."

Page 107, Exercise 5.18: "where L and M are" should be "where L is"

Page 109, diagram (6.3): Replace the diagram with the following:

Page 114, 2 lines above (6.17): " $[a, b+\sqrt{-n}]$ " should be " $[a, -b+\sqrt{-n}]$ " Page 115, line 5: "35 satisfy" should be "34 satisfy"

Page 116, part (b) of Exercise 6.6: Replace the first two sentence of the hint with "use Proposition 5.10. For a prime \mathfrak{P} of \mathcal{O}_{LM} containing \mathfrak{p} , show that if $\sigma \in I_{\mathfrak{P}}$, then the restrictions $\sigma|_L$ and $\sigma|_M$ lie in the inertia groups of $\mathfrak{P} \cap \mathcal{O}_L$ and $\mathfrak{P} \cap \mathcal{O}_M$ respectively."

Page 122, line 4: "principal ideals" should be "nonzero principal ideals"

Page 122, line 4: "all ideals" should be "all nonzero ideals"

Page 125, line -12: "let \mathfrak{a} be a fractional" should be "let \mathfrak{a} be a proper fractional"

Page 127, one line above (7.16): " $a \cdot \mathfrak{a} = \alpha \cdot a[a, \tau]$ " should be " $a \cdot \mathfrak{a} = \alpha \cdot a[1, \tau]$ "

Page 133, four lines below (7.26): " $u \in \mathcal{O}$ " should be " $u \in \mathcal{O}_K$ "

Page 133, three lines below (7.27): "and $f\mathcal{O}_K$ and" should be " $f\mathcal{O}_K$ and"

Page 133, line -4: " $[b][c]^{-1}$ " should be " $\pm [b][c]^{-1}$ "

Page 136, part (a) of Exercise 7.6: "principal ideals" should be "nonzero principal ideals"

Page 136, part (b) of Exercise 7.6: "all ideals" should be "all nonzero ideals"

Page 138, line 2: AM should be MA.

Page 138, line 3: |M/AM| should be |M/MA|.

Page 138, part (c) of Exercise 7.15, line 4: "dividing by a by c" should be "dividing a by c"

Page 138, part (d) of Exercise 7.15: |M/AM| should be |M/MA|.

Page 138, part (a) of Exercise 7.17: " $\mathfrak{a} = [\alpha, \beta]$ to" should be " $\mathfrak{a} = [\alpha, \beta]$, Im $(\beta/\alpha) > 0$, to"

Page 138, line $-2: a^2 - 3c^2 = 1$ should be $a^2 - 3c^2 = -1$

Page 140, line 6 of part (d) of Exercise 7.21: " $\mathfrak{a} = \sqrt{d_K}[a, a\tau]$ " should be " $\mathfrak{a} = \sqrt{D}[a, a\tau]$ "

Page 143, line 1: "any quadratic field" should be "any imaginary quadratic field"

Page 143, line 1: "let f be a positive integer" should be "let f > 1 be an integer."

Page 145, second display: " $I_k(\mathfrak{m})/H$ " should be " $I_K(\mathfrak{m})/H$ "

Page 146, line 15: "mth of unity" should be "mth root of unity"

Page 147, line 4: The citation [62, Chapter V, §6 and Theorem 12.7] refers to the first edition of [62]. For the second edition, the correct citation is [62, Chapter V, §6 and Theorem 11.11].

Page 150, Theorem 8.11: On the line below the first display, " μ_n , is the" should be " μ_n is the" (remove the comma)

Page 151, last paragraph of the proof of Theorem 8.12: The proof has a gap. Weak Reciprocity does not apply to the modulus $p\infty$ since p is odd but Theorem 8.11 with n = 2 requires an even modulus. Thus the last paragraph of the proof should be replaced with the following:

To apply Theorem 8.11 when n = 2, the modulus must be divisible by 2. Since p is odd, $\zeta_{2p} = -\zeta_p$, so $\mathbb{Q}(\zeta_{2p}) = \mathbb{Q}(\zeta_p)$, and by (8.3) and (8.4), $\operatorname{Gal}(\mathbb{Q}(\zeta_{2p})/\mathbb{Q})$ is a generalized ideal class group for the modulus $2p\infty$. It follows that Weak Reciprocity applies to K/\mathbb{Q} for this modulus. This gives a surjective homomorphism

(8.13) $I_{\mathbb{Q}}(2p\infty)/P_{\mathbb{Q},1}(2p\infty) \longrightarrow \{\pm 1\}.$

However, we also have isomorphisms

 $(\mathbb{Z}/p\mathbb{Z})^* \xrightarrow{\sim} (\mathbb{Z}/2p\mathbb{Z})^* \xrightarrow{\sim} I_{\mathbb{Q}}(2p\infty)/P_{\mathbb{Q},1}(2p\infty),$

where the first map follows since p is odd (a even $\Rightarrow a+p$ is odd) and the second map sends $[a] \in (\mathbb{Z}/2p\mathbb{Z})^*$ to $[a\mathbb{Z}] \in I_{\mathbb{Q}}(2p\infty)/P_{\mathbb{Q},1}(2p\infty)$ when a > 0 (see Exercise 8.7). Composing this map with (8.13) shows that (p^*/\cdot) induces a surjective homomorphism from $(\mathbb{Z}/p\mathbb{Z})^*$ to $\{\pm 1\}$. But the Legendre symbol (\cdot/p) is also a surjective homomorphism between the same two groups, and since $(\mathbb{Z}/p\mathbb{Z})^*$ is cyclic, there is only one such homomorphism. This proves that

$$\left(\frac{p^*}{q}\right) = \left(\frac{q}{p}\right)$$

and we are done.

Q.E.D.

Page 153, line 6: "Dirichlet ζ -function" should be "Dedekind ζ -function"

Page 155, lines -18 and -17: "But Exercise 5.9 tells us" should be "But [77, Exercise 4.11(b)] tells us"

Page 158, Exercise 8.4: After the display, add the following new sentences: "Use this to show that if $\operatorname{Gal}(L/K)$ is a generalized ideal class group for \mathfrak{m} , then it is also a generalized ideal class group for \mathfrak{n} . Hint: use part (i) of Theorem 8.2."

Page 159, part (c) of Exercise 8.7: Delete the current part (c) and replace with the following:

(c) Verify the isomorphisms

 $(\mathbb{Z}/p\mathbb{Z})^* \xrightarrow{\sim} (\mathbb{Z}/2p\mathbb{Z})^* \xrightarrow{\sim} I_{\mathbb{Q}}(2p\infty)/P_{\mathbb{Q},1}(2p\infty)$

described in the proof of Theorem 8.12.

Page 159, Exercise 8.8: Replace parts (a)–(c) with the following:

(a) Use Exercise 8.2 to construct isomorphisms

$$I_{\mathbb{Q}}(8\infty)/P_{\mathbb{Q},1}(8\infty) \simeq \operatorname{Gal}(\mathbb{Q}(\zeta_8)/\mathbb{Q}) \simeq (\mathbb{Z}/8\mathbb{Z})^*,$$

and conclude that $I_{\mathbb{Q}}(8\infty)/P_{\mathbb{Q},1}(8\infty) = \{[\mathbb{Z}], [3\mathbb{Z}], [5\mathbb{Z}], [7\mathbb{Z}]\}.$

- (b) Let $H = \{\mathbb{Z}, 7\mathbb{Z}\} P_{\mathbb{Q},1}(8\infty)$. Show that via the Existence Theorem, H corresponds to $\mathbb{Q}(\sqrt{2})$. Hint: using the arguments of Theorem 8.12 and part (b) of Exercise 8.7, show that Hcorresponds to one of $\mathbb{Q}(i)$, $\mathbb{Q}(\sqrt{2})$ or $\mathbb{Q}(\sqrt{-2})$. Then observe that $[7\mathbb{Z}] \in I_Q(8\infty)/P_{\mathbb{Q},1}(8\infty)$ maps to $-1 \in (\mathbb{Z}/8\mathbb{Z})^*$. What element of $\operatorname{Gal}(\mathbb{Q}(\zeta_8)/\mathbb{Q})$ does this correspond to?
- (c) Use Weak Reciprocity to show that (2/·) induces a well-defined homomorphism on (Z/8Z)* whose kernel is {±1}.
- (d) Show that $(2/p) = (-1)^{(p^2-1)/8}$.

Page 160, part (b) of Exercise 8.10: "(ii)–(iv)" should be "(ii)–(vi)"

Page 160, line -2: " $\tilde{S}_{M/K}$ " should be " $\tilde{S}_{M/K}$ "

Page 161, part (a) of Exercise 8.12: " $\tilde{S}_{M/K}$ equals the set $S_{M/K}$ " should be " $\tilde{S}_{M/K}$ equals the set $S_{M/K}$ " (two changes)

Page 161, part (b) of Exercise 8.12: " $\tilde{S}_{M/K} \subset S_{L/K}$ " should be " $\tilde{\mathcal{S}}_{M/K} \subset \mathcal{S}_{L/K}$ " (three changes)

Page 161, part (c) of Exercise 8.12: " $S_{M/K} \subset S_{L/K}$ " should be " $\mathcal{S}_{M/K} \subset \mathcal{S}_{L/K}$ " (two changes)

Page 161, Exercise 8.13, last line: " $N_{\mathfrak{P}}M = M$ " should be " $N_{\mathfrak{P}}M = N_{\mathfrak{P}}$ "

Page 161, Exercise 8.15: In two places, " $S_{L/K}$ " should be " $\mathcal{S}_{L/K}$ ", and in two places, " $S_{L'/K}$ " should be " $\mathcal{S}_{L'/K}$ "

Page 161, Exercise 8.16, line 2: " $\tilde{S}_{M/L} = S_{M/K}$ " should be " $\tilde{S}_{M/K} = S_{M/K}$ " (three changes)

Page 161, Exercise 8.16, last line: "of Proposition 8.20" should be "of Proposition 8.20 and Exercise 8.15"

Page 161: Add the following new exercise following Exercise 8.16:

- 8.17. The definition of $P_{K,1}(\mathfrak{m})$ differs from the standard definition, which uses valuations and multiplicative congruences. See, for example, [62, Chapter IV]. One can show without difficulty that the equivalence of the two definitions reduces to the following claim: $P_{K,1}(\mathfrak{m})$ contains all principal fractional ideals of the form $(a/b)\mathcal{O}_K$ where $a, b \in \mathcal{O}_K$ are relatively prime to \mathfrak{m}_0 , $a \equiv b$ mod \mathfrak{m}_0 , and $\sigma(a/b) > 0$ for all real infinite primes dividing \mathfrak{m} .
 - (a) Let $\sigma_1, \ldots, \sigma_r$ be the real infinite primes dividing \mathfrak{m} , and for each i, pick $\epsilon_i \in \{\pm 1\}$. Prove that there is $\lambda \in \mathcal{O}_K$ such that $\lambda \equiv 1 \mod \mathfrak{m}_0$, and $\sigma_i(\epsilon_i \lambda) > 0$ for all i. Hint: by the Approximation Theorem (Theorem 1.1 of [62, Chapter IV]), there is $\alpha \in K^*$ such that $\sigma_i(\epsilon_i \alpha) > 0$ for all i. Argue that α can be chosen to lie in \mathcal{O}_K . Then let $\lambda = 1 + d\alpha\beta^2$ where d is a sufficiently large positive integer and β is a nonzero element of \mathfrak{m}_0 .

(b) Prove the claim made at the beginning of the exercise. Hint: multiply a, b by a suitable $c \in \mathcal{O}_K$ to ensure $a, b \equiv 1 \mod \mathfrak{m}_0$, and then multiply both by λ from part (a) for a suitable choice of ϵ_i to make $\sigma_i(a), \sigma_i(b) > 0$ for all i.

Page 165, line 1: "Lemma 5.21" should be "Corollary 5.21"

Page 167, line 3: "Gal $(L/K) \simeq \mathbb{Z}/3\mathbb{Z}$, then "Gal $(L/\mathbb{Q}) \simeq S_3$ " should be "Gal $(M/K) \simeq \mathbb{Z}/3\mathbb{Z}$, then "Gal $(M/\mathbb{Q}) \simeq S_3$ "

Page 167, line 9: " σ is real" should be " α is real"

Page 169, line 1: Replace with "If $\pi = a + bi$ is a primary prime of $\mathbb{Z}[i]$, then"

Page 169, third display: " $I_K(6)/P_{K,\mathbb{Z}}(6)$ " should be " $I_K(6)/P_{K,1}(6)$ "

Page 171, four lines below third display: $p \nmid (f)$ should be $p \nmid f$

Page 177, Exercise 9.21: Replace parts (c) and (d) with the following:

(c) Consider the natural maps

$$\pi: (\mathcal{O}_K/f\mathcal{O}_K)^* \longrightarrow (\mathcal{O}_K/\mathfrak{m})^*$$
$$\beta: (\mathbb{Z}/f\mathbb{Z})^* \longrightarrow (\mathcal{O}_K/f\mathcal{O}_K)^*.$$

Show that $\ker(\pi) \subset \mathcal{O}_K^* \cdot \operatorname{im}(\beta)$. Hint: use (b) and show that elements of $P_{K,\mathbb{Z}}(f)$ can be represented as $(\gamma/\delta)\mathcal{O}_K$ where $\gamma, \delta \in \mathcal{O}_K$ satisfy $\gamma \equiv c \mod f\mathcal{O}_K$ for $c \in \mathbb{Z}$ with $\operatorname{gcd}(c, f) = 1$ and $\delta \equiv 1 \mod f\mathcal{O}_K$.

Page 179, line 2: Add the following hint to part (b) of Exercise 9.23: "Hint: show that $\ker(\pi) \subset \mathcal{O}_K^* \cdot \operatorname{im}(\beta)$ leads to a contraction. Use Exercise 9.22 to reduce to the case where $\ker(\pi) \not\subset \operatorname{im}(\beta)$ and prove that there is an exact sequence

$$1 \longrightarrow \ker(\pi) \cap \operatorname{im}(\beta) \longrightarrow \ker(\pi) \longrightarrow \mathcal{O}_K^* / (\mathcal{O}_K^* \cap \operatorname{im}(\beta)).$$

Page 186, line -1: At the end of the display, " $z\wp(z)$ " should be " $2\wp(z)$ "

Page 192, 4 lines below (10.19): " $\pm (z + w_i)$ " should be " $\pm (z + w_j)$ "

Page 197, Exercise 10.4, second line of the display: "+ $\frac{24G_4(L)}{z^2}$ " should be "- $\frac{24G_4(L)}{z^2}$ "

Page 199, part (b) of Exercise 10.16: "Theorem 5.25" should be "Theorem 5.30"

Page 199, part (c) of Exercise 10.16: On line 2, "lattices given with" should be "lattices with"

Page 199, part (c) of Exercise 10.16: In the display, " $\sum_{f=1}^{[\mathcal{O}_K:\mathbb{Z}[\alpha]]} h(f^2 d_K)$ "

should be " $\sum_{f \mid [\mathcal{O}_K:\mathbb{Z}[\alpha]]} h(f^2 d_K)$ "

Page 200, part (c) of Exercise 10.19: Delete the hint.

Page 203, line –14: " $\gamma \neq \pm 1$ " should be " $\gamma \neq \pm I$ "

Page 208, line 10: The display should be

$$q(\sigma\tau) = e^{2\pi i(a\tau+b)/d} = e^{2\pi i b/d} q^{a/d}$$

(two errors in the original)

Page 208, line -7: " $j(m\gamma_i, \gamma\tau)$'s" should be " $j(m\gamma_i\gamma\tau)$'s"

Page 210, part (v) of Theorem 1.18: " $(X^P - Y)(X - Y^P)$ " should be " $(X^p - Y)(X - Y^p)$ " (two errors)

Page 217, line 1: " $\equiv 1$ " should be "= 1"

Page 217, line 12: "some prime ideal of \mathcal{O} " should be "some prime ideal of \mathcal{O}_K "

Page 218, Theorem 11.36: " \mathfrak{p} is a prime ideal of \mathcal{O}_K " should be " \mathfrak{p} is a prime ideal of \mathcal{O}_K relatively prime to the conductor of \mathcal{O} "

Page 219, line -10: "of class field theory" should be "of complex multiplication"

Page 220, Exercise 11.2: "SL $(2\mathbb{Z})$ " should be "SL $(2,\mathbb{Z})$ "

Page 220, Exercise 11.2: "use (7.9)" should be "use (7.10)"

Page 220, bottom line: " $\operatorname{Re}(\tau) \ge 0$ " should be " $\operatorname{Re}(\tau) \le 0$ "

Page 221, second display: The display should be

 $|b| \le a \le c$, and $b \ge 0$ if either |b| = a or a = c.

Page 221, part (b) of Exercise 11.4: Add the following sentences to the hint: "Show that among all forms properly equivalent to a given positive definite form with real coefficients, there is one with minimal |b|. Equation (2.4) is helpful."

Page 221, part (c) of Exercise 11.4: Replace the last sentence with "Furthermore, show that $b = -2a\text{Re}(\tau)$ and $c = a|\tau|^2$."

Page 221, bottom line: "Use (7.9)" should be "Use (7.10)"

Page 222, part (a) of Exercise 11.6: "SL(2, \mathbb{Z}) and that" should be "SL(2, \mathbb{Z}), $\gamma \neq \pm I$, and that"

Page 222, part (c) of Exercise 11.6: Delete the entire Hint.

Page 224, Exercise 11.16: "Let $M = \mathbb{Z}^2$, and" should be "Let $M = \mathbb{Z}^2$, thought of as column vectors, and"

Page 224, Exercise 11.16: "We know from Exercise 7.15" that" should be "Exercise 7.15, applied to the transpose of A, implies that"

Page 225, part (a) of Exercise 11.21: "Theorem 5.3" should be "Proposition 5.3"

Page 227, two lines below the statement of Theorem 12.2: At the end of the line, "by Theorem 12.2." should be "by Theorem 12.2,"

Page 227, three lines below the statement of Theorem 12.2: " $j(\tau)$ " should be " $j(\tau_0)$ "

Page 228, display (12.5): " $\sum_{n=0}^{\infty} b_n q^n$ " should be " $\sum_{n=1}^{\infty} b_n q^n$ "

Page 231, second display: " 3_{τ_0} " should be " $3\tau_0$ "

Page 236, three lines above Corollary 12.19: "see Exercise 2.16" should be "see Exercise 12.16"

Page 240, line 13: " $\mathbb{Q}(\sqrt{-l4})$ " should be " $\mathbb{Q}(\sqrt{-14})$ "

Page 241, bottom line: " $\zeta_d^a q^{a/d} = \zeta_b^a (q^{1/8})^{a^2}$ " should be " $\zeta_d^b q^{a/d} = \zeta_d^b (q^{1/8})^{a^2}$ " (three errors)

Page 245, display (12.32): " $\sigma(\mathfrak{f}_1(\sqrt{-14}/2)^2)$ " should be " $\sigma(\mathfrak{f}_1(\sqrt{-14})^2)$ "

Page 245, bottom line: " $e^{2.002q}$ " should be " $e^{2.004q}$ "

Page 245, line 2: " $e^{2.002q}$ " should be " $e^{2.004q}$ "

10

Page 250, bottom line: The display should be " $S\begin{pmatrix}a&b\\c&d\end{pmatrix} = \begin{pmatrix}-c&*\\a&*\end{pmatrix}$ "

Page 251, line 2: The display should be " $T^{\pm 1}\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} a \pm c & * \\ c & * \end{pmatrix}$,"

Page 251, bottom line: " $\gamma_3(3\tau)$ " should be " $\gamma_2(3\tau)$ "

Page 255, part (a) of Exercise 12.14: On the last line of the display, $\left(\frac{f(\tau)^2}{\eta(\tau)^2}\right)$ should be $\left(\frac{f(\tau)^2}{\eta(\tau)^2}\right)$

Page 257, part (b) of Exercise 12.23: Replace the hint with the following: "Hint: show that $\mathfrak{f}_1(\tau)^6$ is a modular function for the group $\tilde{\Gamma}(8)$ defined in Exercise 12.21. Since $\tilde{\Gamma}(8)$ is normal in SL(2, Z), this implies that $\mathfrak{f}(\tau)^6$ is also invariant under $\tilde{\Gamma}(8)$."

Page 258, line 3 of part (e) of Exercise 12.23: " σ_1 and σ_1 " should be " σ_1 and σ_2 "

Page 259, line 2: " $Z[\sqrt{-2}]$ " should be " $\mathbb{Z}[\sqrt{-2}]$ "

Page 259, part (a) of Exercise 12.28: Immediately after the first display, add "Also show that $2mn - 3n^2 > 0$ and $m^2 - 3n^2 > 0$."

Page 259, part (b)(iii) of Exercise 12.28: In the Hint, "implies c = 3" should be "implies b = c = 1".

Page 259, part (b)(iv) of Exercise 12.28: In the Hint, "show that c = 3" should be "show that b = c = 1".

Page 259, part (c) of Exercise 12.28: Delete everything after the first display and replace with the following:

Furthermore, gcd(m, n) = 1 implies gcd(k, n) = 1 and $3 \nmid n$.

- (i) Show that $b = 2kn n^2$ and $c = 3k^2 n^2$.
- (ii) Prove that $c = 3k^2 n^2$ is impossible since c is a perfect square. Hint: work modulo 3.

Page 261, line 1 of part (a) of Exercise 12.31: "Prove that $P = \sqrt{14}(2/\alpha)$ and $Q = \sqrt{7/2}(\alpha/2)$ " should be "Prove that $P = \sqrt{14}/\alpha$ and $Q = \sqrt{7/2}\alpha$ "

Page 262, line -10: "important role. The reason for this is the following" should be "important role. Since $\Phi_1(X, Y)$ implies that $\Phi_1(X, X)$ is identically zero, we focus on the case m > 1. Then we have:"

Page 263, line 4: "Thus $\alpha \notin \mathbb{Z}$," should be "Thus $\alpha \notin \mathbb{Z}$ since m > 1,"

Page 263, line above first display: "a positive integer m, set" should be "an integer m > 1, set"

Page 268, line 1: "compute $H_D(X)$ " should be "compute $H_D(X)$ for most D"

Page 268, line -15: "compute any $H_D(X)$ " should be "compute $H_D(X)$ for any $D \neq -3k^2$, k odd"

Page 277, part (b) of Exercise 13.2: "fixed m" should be "fixed m > 1"

Page 278, part (b) of Exercise 13.6: In four places, " ζ_m^{ab} should be " ζ_m^{-ab} "

Page 280, line 2 of part (a) of Exercise 13.15: "congrunce" should be "congruence"

Page 280, lines 2 and 3 of part (d) of Exercise 13.15: " $a \mid d_1, a \equiv 1 \mod 4$... where $d \equiv 1 \mod 4$ " should be " $a \mid d_1, a, b > 0$ and $gcd(d_1, b) = 1$ "

Page 280, part (d)(ii) of Exercise 13.15: Replace everything, including the hint, with "Show that $(d_1/b) = -(\varepsilon a/d_2)$, where $\varepsilon = (-1)^{(a-1)/2}$. Hint: write $d_1 = \varepsilon ad$ and note that $(d_1/b) = (d_1/4b) = (\varepsilon a/4b)(d/4b)$. Use $4ab = d_1d_2 - x^2$ to show that $4b \equiv \varepsilon dd_2 \mod a$ (remember that ahas no square factors) and then apply quadratic reciprocity to $(\varepsilon a/d)$."

Page 281, line 1 of part (e) of Exercise 13.16: " $\epsilon(p) = 1$ " should be " $\epsilon(p) = -1$ "

Page 287, display (14.7): In the second line of the display, " $12x_1 - g_2$ " should be " $12x_1^2 - g_2$ "

Page 288, four lines above third display: "to the" should be "to be"

Page 293, two lines below third display: "Exercise 4.13" should be "Exercise 14.13"

Page 294, line 2: "discriminant" should be "discriminant when $a \neq 0$ "

Page 294, line 8: "Theorem 9.4" should be "Theorem 9.4 and Exercise 9.3"

Page 296, line 8: " $2\sqrt{p} \le a \le 2\sqrt{p}$ " should be " $-2\sqrt{p} \le a \le 2\sqrt{p}$ " Page 296, display (14.21): The summation should be " $\sum_{0 \le |a| \le 2\sqrt{p}}$ "

Page 296, display following (14.21): The first summation should be " $\sum_{0 \le |a| \le 2\sqrt{p}}$ "

Page 303, line 1: " $j \neq 0, 17284$ " should be " $j \neq 0, 1728$ "

Page 305, display of Exercise 14.7: In two places, "x + z" should be "x + 2" in the denominator

Page 305, Exercise 14.8: "curve the finite field" should be "curve over the finite field"

Page 306, display of Exercise 14.12: " $Frob_q$ " should be " $1 - Frob_q$ "

Page 306, line 2 of part (b) of Exercise 14.13: "takes the curve" should be "transforms the curve"

Page 306, Exercise 14.15: "discriminant" should be "conductor"

Page 312, line 1 of **Remark**: "The decomposition" should be "The decomposition"

Page 312, line below (15.10): " $\gamma_p \in \prod_p \operatorname{GL}(2, \mathbb{Z}_p)$ " should be " $\gamma_p \in \operatorname{GL}(2, \mathbb{Z}_p)$ "

Page 313, line -3: " $(I_L(fm) \cap P_{K,\mathbb{Z}}(f))$ " should be " $(I_K(fm) \cap P_{K,\mathbb{Z}}(f))$ "

Page 315, seven lines above **Theorem 15.16**: "Let K be an imaginary quadratic field K" should be "Let K be an imaginary quadratic field"

Page 315, six lines above **Theorem 15.16**: "Theorem 7.7" should be "Lemma 7.5"

12

Page 315, Theorem 15.16: "be as above" should be "as above"

Page 315, **Theorem 15.16**: On the second line, " F_m Then" should be " F_m . Then" (add a period)

Page 317, fourth line of **Theorem 15.17**: In the display, the righthand side of the equation should be " $f^{\bar{g}_{\tau_0}(u)}(\tau_0)$ "

Page 317, fourth line of the proof of **Theorem 15.18**: "Theorem 15.17" should be "Theorem 15.16"

Page 317, seventh line of the proof of **Theorem 15.18**: " ± 1 , 3 and $1 + \sqrt{-m}$ " should be "-1, 3 and $1 + \sqrt{-m}$ "

Page 318, display (15.19): " $m \equiv 6 \mod 8$ " should be " $m \equiv 6 \mod 8$ and $3 \nmid m$ "

Page 318, two lines below display (15.19): " $m \equiv 3 \mod 8$ " should be " $m \equiv 3 \mod 4$ and $3 \nmid m$ "

Page 318, line -12: "for all proper" should be "for any proper"

Page 320, line 1: " $x_p \in \mathcal{O}_p$ " should be " $x_p \in \mathcal{O} \subset \mathcal{O}_p$ "

Page 324, line -2: " \prod_p^* " should be " \prod_p^* "

Page 327, lines 7 and 8: "Using the description ... Lemma 15.27, it is easy to see that" should be "Since $x \in \widehat{\mathcal{O}}^*$, $g_{\tau_0}(x)$ is easy to describe. Recall that $a\tau_0^2 + b\tau_0 + c = 0$ where $a, b, c \in \mathbb{Z}$ satisfy gcd(a, b, c) = 1and a > 0. Also, $\mathcal{O} = [1, a\tau_0]$ and $[1, \tau_0]$ is a proper \mathcal{O} -ideal. As explained in [A23, §3], $g_{\tau_0}(x)$ is the *transpose* of the matrix representing multiplication by x on $[1, \tau_0] \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}$ relative to the basis $\{\tau_0, 1\}$. To get an explicit formula for $g_{\tau_0}(x)$, note that $\widehat{\mathcal{O}}^* = \widehat{\mathbb{Z}} + \widehat{\mathbb{Z}}a\tau_0$, so $x = A + Ba\tau_0$ for $A, B \in \widehat{\mathbb{Z}}$. Then a calculation similar to item (iii) in the discussion leading up to Theorem 15.17 shows that

$$g_{\tau_0}(x) = \begin{pmatrix} A - bB & -Bc \\ aB & A \end{pmatrix}.$$

Note that"

Page 327, two lines below second display: "To prove this, ... the map $u \mapsto \sigma_u$ " should be "Write $u = [\alpha] \in (\mathcal{O}/m\mathcal{O})^*$, where α is relatively prime to fm as in the proof of Lemma 15.13. Then the exact sequence (15.14) gives $[\alpha \mathcal{O}_K] \in (I_K(fm) \cap P_{K,\mathbb{Z}}(f))/P_{K,\mathbb{Z},m}(fm)$, which in turn

gives $\sigma_u \in \text{Gal}(L_{\mathcal{O},m}/L_{\mathcal{O}})$ via the ideal-theoretic Artin map. The next step is to bring ideles into the picture."

Page 327, third display: Delete the label (15.38)

Page 327, line following third display to end of the proof of Theorem 15.17: Delete and replace with the following:

The two Artin maps are related by the commutative diagram

(15.38)
$$\begin{array}{c} \widehat{\mathcal{O}}^*/J^1_{\mathcal{O},m} \xrightarrow{\operatorname{Artin}} \operatorname{Gal}(L_{\mathcal{O},m}/L_{\mathcal{O}}) \\ \downarrow^{\iota} \xrightarrow{\operatorname{Artin}} \\ (I_K(fm) \cap P_{K,\mathbb{Z}}(f))/P_{K,\mathbb{Z},m}(fm) \end{array}$$

where ι is defined as follows: if $x = (x_p) \in \widehat{\mathcal{O}}^*$ and $\beta \in K^*$ satisfy $\beta x_p \in 1 + fm\mathcal{O}_{K,p}$ for all $p \mid fm$, then $\iota([x]) = [\beta\mathcal{O}_K]$. Here, $\mathcal{O}_{K,p} = \mathcal{O}_K \otimes_{\mathbb{Z}} \mathbb{Z}_p$. Exercises 15.20 and 15.21 will give full details about the diagram (15.38).

The strategy will be to construct an idele $x \in \widehat{\mathcal{O}}_K^*$ that maps to $[\alpha \mathcal{O}_K]$ via ι , so that the Artin map to $\operatorname{Gal}(L_{\mathcal{O},m}/L_{\mathcal{O}})$ takes x to σ_u . Then, if x maps to $\sigma \in \operatorname{Gal}(K^{ab}/L_{\mathcal{O}})$ via the Artin map, then

$$\sigma_u = \sigma|_{L\mathcal{O} m}$$

To construct x, observe that $\alpha \in \mathcal{O}_p^*$ whenever $p \mid fm$ since α is relatively prime to fm. Thus α has an inverse $\alpha_p^{-1} \in \mathcal{O}_p^*$ when $p \mid fm$. Now consider the idele $x = (x_p) \in \widehat{\mathcal{O}}^*$ where

$$x_p = \begin{cases} 1 & p \nmid fm \\ \alpha_p^{-1} & p \mid fm. \end{cases}$$

Then $p \mid fm$ implies that $\alpha x_p = \alpha \alpha_p^{-1} = 1 \in 1 + fm\mathcal{O}_{K,p}$. By the definition of ι , it follows that $\iota([x]) = [\alpha \mathcal{O}_K]$, so the Artin map to $\operatorname{Gal}(L_{\mathcal{O},m}/L_{\mathcal{O}})$ takes x to σ_u .

Now take $f \in \mathsf{F}_m$ such that $f(\tau_0)$ is defined. Then $f(\tau_0) \in L_{\mathcal{O},m}$ by Theorem 15.16, so that by Shimura reciprocity (Theorem 15.12), we have

$$\sigma_u(f(\tau_0)) = \sigma(f(\tau_0)) = f^{g_{\tau_0}(x^{-1})}(\tau_0).$$

However, $f \in \mathsf{F}_m$ implies that $f^{g_{\tau_0}(x^{-1})}$ depends only on $g_{\tau_0}(x^{-1})$ modulo m. Recall from the proof of Theorem 15.16 that $g_{\tau_0}(x^{-1})$ is the transpose of the matrix representing multiplication by x^{-1} on $[1, \tau_0] \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}$ relative to the basis $\{\tau_0, 1\}$.

The definition of x easily implies that $x^{-1} = ((x^{-1})_p)$ is given by

$$(x^{-1})_p = \begin{cases} 1 & p \nmid fm \\ \alpha & p \mid fm, \end{cases}$$

which means that via the isomorphism (15.37), multiplication by x^{-1} on $[1, \tau_0] \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}$ reduces to multiplication by $u = [\alpha]$ on $[1, \tau_0] \otimes_{\mathbb{Z}} \mathbb{Z}/m\mathbb{Z}$. The discussion leading up to Theorem 15.17 shows that $\overline{g}_{\tau_0}(u) \in \operatorname{GL}(2, \mathbb{Z}/m\mathbb{Z})$ is the transpose of the matrix representing this map relative to the basis $\{\tau_0, 1\}$. It follows immediately that $g_{\tau_0}(x^{-1})$ reduces modulo m to $\overline{g}_{\tau_0}(u)$. Thus $\sigma_u(f(\tau_0)) = f^{\overline{g}_{\tau_0}(u)}(\tau_0)$, completing the proof of Theorem 15.17.

Page 328, line immediately above F. Exercises: "suprisingly" should be "surprisingly"

Page 329, line 5: "invariant under $\Gamma(8)$ using (12.26)" should be "invariant under the group $\tilde{\Gamma}(8)$ from Exercise 12.21 using (12.26). Note also that $\Gamma(8) \subseteq \tilde{\Gamma}(8)$ "

Page 329, Exercise 15.4: " $\gamma_p \in \prod_p \operatorname{GL}(2, \mathbb{Z}_p)$ " should be " $\gamma_p \in \operatorname{GL}(2, \mathbb{Z}_p)$ "

Page 329, part (c) of Exercise 15.5: "for $a \in \mathbb{Z}$ relatively prime to fm" with "for $a \in \mathbb{Z}$ and α relatively prime to fm"

Page 330, line 1 of Exercise 15.9: " $m \equiv 3 \mod 8$ " should be " $m \equiv 3 \mod 4$ and $3 \nmid m$ "

Page 330, line 2 of Exercise 15.9: " $\mathfrak{f}(\sqrt{-m})^6$ " should be " $\mathfrak{f}(\sqrt{-m})^6$ "

Page 330, line 3 of Exercise 15.9: Add a new sentence: "Do the cases $m \equiv 3 \mod 8$ and $m \equiv 7 \mod 8$ separately."

Page 330, line 4 of part (b) of Exercise 15.12: " $p^{n_p}x$ " should be " $p^{n_p}x_p$ "

Page 331, Exercise 15.15: Replace the existing parts (b), (c) with new parts (b), (c), (d) as follows:

(b) Prove that $K^* \subset \widehat{K}^*$ is discrete. By a standard result for Hausdorff topological groups, this implies that K^* is closed in \widehat{K}^* (see Proposition 12 of §2.3 of *Introduction to Topological Groups* by T. Husain, Saunders, Philadelphia, 1966). Hint: first show that $K^* \cap \prod_{\mathfrak{p}} \mathcal{O}_{K_{\mathfrak{p}}}^* = \mathcal{O}_K^*$.

- (c) Use parts (a) and (b) to prove that $\bigcap_{\mathfrak{m}}(K^*\mathbf{I}_K^{\mathfrak{m}}/K^*) = K^*(\mathbb{C}^* \times \{1\})/K^*$. Hint: note that the sets $\prod_{\mathfrak{p}} U_{\mathfrak{p}}^{n_{\mathfrak{p}}}$ form a neighborhood basis of the identity as we vary over all moduli $\mathfrak{m} = \prod_{\mathfrak{p}} \mathfrak{p}^{n_{\mathfrak{p}}}$.
- (d) Theorems 7.1 and 7.3 of [80, §IV.7] imply that for every modulus \mathfrak{m} , there is a finite extension $K_{\mathfrak{m}}$ such that $\Phi_{K}^{-1}(\operatorname{Gal}(K^{ab}/K_{\mathfrak{m}})) = K^* \mathbf{I}_{K}^{\mathfrak{m}}/K^*$ via the Artin map $\Phi_K : \mathbf{C}_K = \mathbf{I}_K/K^* \to \operatorname{Gal}(K^{ab}/K)$. Use this and part (b) to show that the kernel of Φ_K is given by $K^*(\mathbb{C}^* \times \{1\})/K^*$.

Page 331, Exercise 15.15: Relabel the existing part (d) as part (e).

Page 331, final paragraph of Exercise 15.15: In the first three lines of this paragraph, replace "The idelic version of ... an Abelian extension $K_{\mathfrak{m}}$ of K, called the" with "The Abelian extension $K_{\mathfrak{m}}$ of K defined in part (d) is called the"

Page 331, Exercise 15.16: Replace the entire exercise with the following:

Exercise 15.16. This problem concerns the isomorphism (15.34).

- (a) The text defines $\widehat{K} = K \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}$ and uses $K \otimes_{\mathbb{Z}} \mathbb{Z}_p \simeq \prod_{p \in \mathfrak{p}} K_{\mathfrak{p}}$ to show that $\widehat{K}^* \simeq \prod_{\mathfrak{p}}^* K_{\mathfrak{p}}^*$ in Exercise 15.12. In a similar way, there is an isomorphism $\mathcal{O}_K \otimes_{\mathbb{Z}} \mathbb{Z}_p \simeq \prod_{p \in \mathfrak{p}} \mathcal{O}_{K_{\mathfrak{p}}}$ by [A20, Chapter II, Proposition 4]. Use this to prove that for $\widehat{\mathcal{O}}_K = \mathcal{O}_K \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}}$, there is an isomorphism $\widehat{\mathcal{O}}_K^* \simeq \prod_{\mathfrak{p}} \mathcal{O}_{K_{\mathfrak{p}}}^*$.
- (b) Consider the following construction that associates a fractional ideal $x\mathcal{O}_K$ to an idele $x \in \prod_{\mathfrak{p}}^* K_{\mathfrak{p}}^*$. Given $x = (x_{\mathfrak{p}})$, note that $x_{\mathfrak{p}} \in \mathfrak{p}^{n_{\mathfrak{p}}(x)}\mathcal{O}_{K_{\mathfrak{p}}}^*$ for a unique $n_{\mathfrak{p}}(x) \in \mathbb{Z}$, where only finitely many $n_{\mathfrak{p}}(x)$ are nonzero. Then define $x\mathcal{O}_K = \prod_{\mathfrak{p}} \mathfrak{p}^{n_{\mathfrak{p}}(x)}$. Prove that $\mathfrak{a} = x\mathcal{O}_K$ satisfies $\mathfrak{a} \otimes_{\mathbb{Z}} \widehat{\mathbb{Z}} = x\widehat{\mathcal{O}}_K$.
- (c) Prove that the map $x \mapsto [x\mathcal{O}_K] \in C(\mathcal{O}_K)$ induces an isomorphism $\widehat{K}^*/K^*\widehat{\mathcal{O}}_K^* \simeq C(\mathcal{O}_K)$. Also show that this isomorphism agrees with the map defined in the discussion following (15.34). Hint: The x constructed in Lemma 15.23 is unique up to multiplication by an element of $\widehat{\mathcal{O}}_K^*$.

Page 331, Exercise 15.17: Relabel the existing part (b) as part (c) and add the following new part (b):

(b) Prove that $P_{K,1}(\mathfrak{m}) = \{\delta \mathcal{O}_K : \delta \in K^*, \ \delta \equiv 1 \mod \mathfrak{m}\}$. Hint: in §8, $P_{K,1}(\mathfrak{m})$ is defined to be $\{(\alpha_0/\beta_0)\mathcal{O}_K : \alpha_0, \beta_0 \in \mathcal{O}_K, \ \alpha_0 \equiv$

16

 $\beta_0 \equiv 1 \mod \mathfrak{m}$. The exact sequence from part (a) of Exercise 8.1 will be useful.

Page 332, line 1: " $\beta x \equiv 1 \mod \mathfrak{m}$ for all $\mathfrak{p} \mid \mathfrak{m}$ " should be " $\beta x \equiv 1 \mod \mathfrak{m}$ as defined above"

Page 332, line 2 of part (b) of Exercise 15.18: "the isomorphism takes of" should be "the isomorphism of"

Page 332, Exercise 15.20: Delete the existing exercise and replace with the following:

Exercise 15.20. Fix a modulus \mathfrak{m} . In [80, Chapter IV, Proposition (8.2)], Neukirch constructs a commutative diagram

$$\mathbf{I}_{K}^{\mathrm{fin}}/K^{*}\mathbf{I}_{K}^{\mathrm{fin},\mathfrak{m}} \xrightarrow{\mathrm{Artin}} \mathrm{Gal}(K_{\mathfrak{m}}/K)$$

$$\downarrow^{\kappa_{\mathfrak{m}}} \overbrace{\mathrm{Artin}}^{\mathrm{Artin}} I_{K}(\mathfrak{m})/P_{K,1}(\mathfrak{m})$$

where $\kappa_{\mathfrak{m}}$ has the property that $\kappa_{\mathfrak{m}}([x]) = [x\mathcal{O}_K]$ whenever $x = (x_{\mathfrak{p}}) \in \mathbf{I}_K^{\text{fin}}$ satisfies $x_{\mathfrak{p}} = 1$ for all $\mathfrak{p} \mid \mathfrak{m}$. Prove that κ_m equals the map defined in Exercise 15.17. Hint: for a prime \mathfrak{p} of \mathcal{O}_K not dividing \mathfrak{m} , let $\pi_{\mathfrak{p}} \in \mathcal{O}_{K_{\mathfrak{p}}}$ satisfy $\pi_{\mathfrak{p}}\mathcal{O}_{K_{\mathfrak{p}}} = \mathfrak{p}\mathcal{O}_{K_{\mathfrak{p}}}$. Define $x(\mathfrak{p}) \in \mathbf{I}_K^{\mathfrak{m}}$ to be the idele that has $\pi_{\mathfrak{p}}$ in position \mathfrak{p} and 1 in all other positions.

Page 333, Exercise 15.21: Delete the existing exercise and replace with the following:

Exercise 15.21. This exercise concerns the diagram (15.38). Fix an order $\mathcal{O} \subset \mathcal{O}_K$ of conductor f and a positive integer m, and recall the subgroups $J_{fm} \subset J_{\mathcal{O},m} = K^* J^1_{\mathcal{O},m} \subset \widehat{K}^*$ defined in Exercise 15.18.

(a) For $\mathfrak{m} = fm\mathcal{O}_K$, combine the isomorphism $\kappa_{fm} : \mathbf{I}_K^{\text{fin}}/K^*\mathbf{I}_K^{\text{fin},fm} \simeq I_K(fm)/P_{K,1}(fm)$ from Exercise 15.20 with the isomorphism $\widehat{K}^*/J_{fm} \simeq \mathbf{I}_K^{\text{fin},fm}/K^*\mathbf{I}_K^{\text{fin},fm}$ from Exercise 15.18 to create a commutative diagram

$$K^*\widehat{\mathcal{O}}^*/K^*J^1_{\mathcal{O},m} \xrightarrow{\operatorname{Artin}} \operatorname{Gal}(L_{\mathcal{O},m}/L_{\mathcal{O}})$$

$$\downarrow^{\kappa} \xrightarrow{\operatorname{Artin}} (I_K(fm) \cap P_{K,\mathbb{Z}}(f))/P_{K,\mathbb{Z},m}(fm)$$

where κ is an isomorphism.

(b) Combine part (a) with the natural map $\widehat{\mathcal{O}}^*/J^1_{\mathcal{O},m} \to \widehat{\mathcal{O}}^*/K^*J^1_{\mathcal{O},m}$ to show that the map ι defined in the proof of Theorem 15.17 gives the commutative diagram (15.38).

Page 333, Exercise 15.22: " $\zeta_m j(\tau) \in \mathsf{F}_m$ " should be " $\zeta_m \in \mathsf{F}_m$ "

Page 333, Exercise 15.24, end of the sentence: Add two new sentences "The example following Theorem 15.16 characterized $p = x^2 + y^2$ with $x \equiv 1 \mod 5, y \equiv 0 \mod 5$ using the extended ring class field $L_{\mathcal{O},5}$. Here we explore this example from some other points of view."

Page 333, Exercise 15.24: Add new parts (c), (d), (e) as follows:

(c) Show that for p > 5, $x^4 + x^3 + x^2 + x + 1 \equiv 0 \mod p$ has a solution if and only if $p \equiv 1 \mod 5$, and conclude that for a prime p,

 $p = x^2 + y^2, x \equiv 1 \mod 5, y \equiv 0 \mod 5 \iff p \equiv 1 \mod 20.$

- (d) Prove the equivalence of part (c) using Proposition 5.21 and the Artin map (8.4). Hint: see part (a) and the solution to Exercise 15.7.
- (e) Give an elementary proof of the equivalence of part (c).