Typographical Errors in the Second Edition of

Primes of the Form \(x^2 + ny^2\)

March 29, 2020

Page v, line −8: The title of §1 should be “FERMAT, EULER AND QUADRATIC RECIPROCITY”

Page 30, first line of (2.21): “15.23” should be “15, 23”

Page 32, line 2 of Theorem 2.26: “not dividing \(D\)” should be “not dividing \(D\),” (the period should be a comma)

Page 48, line −13: “\(\ker(\chi) \in (\mathbb{Z}/D\mathbb{Z})^*\)” should be “\(\ker(\chi) \subset (\mathbb{Z}/D\mathbb{Z})^*\)”

Page 53, line −1: “property” should be “properly”

Page 61, part (a) of Exercise 3.9: “if and only if \(a, b\) or \(ab\) has order \(\leq 2\) in \(G\)” should be “if and only if \(a\) or \(b\) has order \(\leq 2\) in \(G\)”

Page 62, line 9: “that Proposition 3.11 and Theorem 3.15 hold for all” should be “that Proposition 3.11 holds for all”

Page 65, part (c) of Exercise 3.20: “\(f(\alpha x + \beta y, \gamma x + \delta y)\)” should be “\(f(\alpha x + \gamma y, \beta x + \delta y)\)”

Page 65, lines −2 and −1 : “Note also that Lemma 3.25 gives a very quick proof of Exercise 2.27” should be “Note that Lemma 3.25 gives a quick proof of Exercise 2.27(a) for forms of discriminant \(-4n\) when \(p \nmid n\)”

Page 75, line 18: “the second memoir. Gauss” should be “the second memoir, Gauss” (the period should be a comma)

Page 91, lines −4 and −3: “\(f_i(x)\) are distinct and irreducible modulo \(p\)” with “\(f_i(x)\) are monic, and distinct and irreducible modulo \(p\)”

Page 104, part (f) of Exercise 5.6: “\(p\mathcal{O}_L + f_i(\alpha)\mathcal{O}_K\)” should be “\(p\mathcal{O}_L + f_i(\alpha)\mathcal{O}_L\)”

Page 104, part (f) of Exercise 5.6: In the hint, “\(I_1 \cdots I_g \subset p\mathcal{O}_L\)” should be “\((p\mathcal{O}_L)^g \subset I_1 \cdots I_g \subset p\mathcal{O}_L\)”

Page 105, part (d) of Exercise 5.7: It should be “Prove the description of \(\mathcal{O}_K\) given in (5.14)”
Page 125, line −12: “let \(a \) be a fractional” should be “let \(a \) be a proper fractional”

Page 127, one line above (7.16): “\(a \cdot a = \alpha \cdot a[a, \tau] \)” should be “\(a \cdot a = \alpha \cdot a[1, \tau] \)”

Page 133, four lines below (7.26): “\(u \in \mathcal{O} \)” should be “\(u \in \mathcal{O}_K \)”

Page 133, line −4: “[\(b \)][c] −1” should be “\(\pm [b][c]^{-1} \)”

Page 138, part (c) of Exercise 7.15, line 4: “dividing by \(a \) by \(c \)” should be “dividing \(a \) by \(c \)”

Page 143, line 1: “let \(f \) be a positive integer” should be “let \(f > 1 \) be an integer.

Page 145, second display: “\(I_\mathcal{K}(m)/H \)” should be “\(I_\mathcal{K}(m)/H \)”

Page 146, line 15: “\(m \)th of unity” should be “\(m \)th root of unity”

Page 147, line 4: The citation [62, Chapter V, §6 and Theorem 12.7] refers to the first edition of [62]. For the second edition, the correct citation is [62, Chapter V, §6 and Theorem 11.11].

Page 151, last paragraph of the proof of Theorem 8.12: The proof has a gap. Weak Reciprocity does not apply to the modulus \(p^\infty \) since \(p \) is odd but Theorem 8.11 with \(n = 2 \) requires an even modulus. Thus the last paragraph of the proof should be replaced with the following:

To apply Theorem 8.11 when \(n = 2 \), the modulus must be divisible by 2. Since \(p \) is odd, \(\zeta_{2p} = -\zeta_p \), so \(\mathbb{Q}(\zeta_{2p}) = \mathbb{Q}(\zeta_p) \), and by (8.3) and (8.4), \(\text{Gal}(\mathbb{Q}(\zeta_{2p})/\mathbb{Q}) \) is a generalized ideal class group for the modulus \(2p^\infty \). It follows that Weak Reciprocity applies to \(K'/\mathbb{Q} \) for this modulus. However, we have isomorphisms

\[
(\mathbb{Z}/p\mathbb{Z})^* \cong (\mathbb{Z}/2p\mathbb{Z})^* \cong I_\mathbb{Q}(2p^\infty)/P_{Q,1}(2p^\infty),
\]

where the first map follows since \(p \) is odd (\(a \) even \(\Rightarrow a + p \) is odd) and the second map sends \([a] \in (\mathbb{Z}/2p\mathbb{Z})^*\) to \([a\mathbb{Z}] \in I_\mathbb{Q}(2p^\infty)/P_{Q,1}(2p^\infty)\) when \(a > 0 \) (see Exercise 8.7). Composing this map with (8.13) shows that \((p^*/\cdot)\) induces a surjective homomorphism from \((\mathbb{Z}/p\mathbb{Z})^*\) to \(\{-1\}\). But the Legendre symbol \((\cdot/p)\) is also a surjective homomorphism between the same two groups, and since \((\mathbb{Z}/p\mathbb{Z})^*\) is cyclic, there is only one such homomorphism. This proves that

\[
\left(\frac{p^*}{q}\right) = \left(\frac{q}{p}\right),
\]
and we are done. Q.E.D.

Page 155, lines −18 and −17: “But Exercise 5.9 tells us” should be “But [77, Exercise 4.11(b)] tells us”

Page 159, part (c) of Exercise 8.7: Delete the current part (c) and replace with the following:

(c) Verify the isomorphisms
\[(\mathbb{Z}/p\mathbb{Z})^* \cong (\mathbb{Z}/2p\mathbb{Z})^* \cong I_{\mathbb{Q}}(2p\infty)/P_{\mathbb{Q},1}(2p\infty)\]
described in the proof of Theorem 8.12.

Page 161, Exercise 8.13, last line: “\(N_{\mathfrak{p}}M = M\)” should be “\(N_{\mathfrak{p}}M = N\)”

Page 161, Exercise 8.16, line 2: “\(\tilde{S}_{M/L}\)” should be “\(\tilde{S}_{M/K}\)”

Page 161, Exercise 8.16, last line: “of Proposition 8.20” should be “of Proposition 8.20 and Exercise 8.15”

Page 165, line 1: “Lemma 5.21” should be “Corollary 5.21”

Page 167, line 3: “\(\text{Gal}(L/K) \cong \mathbb{Z}/3\mathbb{Z}\), then “\(\text{Gal}(L/\mathbb{Q}) \cong S_3\)” should be “\(\text{Gal}(M/K) \cong \mathbb{Z}/3\mathbb{Z}\), then “\(\text{Gal}(M/\mathbb{Q}) \cong S_3\)”

Page 167, line 9: “\(\sigma\) is real” should be “\(\alpha\) is real”

Page 169, line 1: Replace with “If \(\pi = a + bi\) is a primary prime of \(\mathbb{Z}[i]\), then”

Page 169, third display: “\(I_K(6)/P_{K,\mathbb{Z}}(6)\)” should be “\(I_K(6)/P_{K,1}(6)\)”

Page 186, line −1: At the end of the display, “\(z\varphi(z)\)” should be “\(2\varphi(z)\)”

Page 192, 4 lines below (10.19): “\(\pm(z+w_i)\)” should be “\(\pm(z+w_j)\)”

Page 197, Exercise 10.4, second line of the display: “\[+\frac{24G_4(L)}{z^2}\]” should be “\[-\frac{24G_4(L)}{z^2}\]”

Page 199, part (b) of Exercise 10.16: “Theorem 5.25” should be “Theorem 5.30”
Page 199, part (c) of Exercise 10.16: In the display, \(\sum_{f=1}^{[\mathcal{O}_K : \mathbb{Z}[\alpha]]} h(f^2 d_K) \) should be \(\sum_{f \mid [\mathcal{O}_K : \mathbb{Z}[\alpha]]} h(f^2 d_K) \).

Page 203, line -14: \(\gamma \neq \pm 1 \) should be \(\gamma \neq \pm I \).

Page 208, line 10: The display should be
\[
q(\sigma \tau) = e^{2\pi i (a \tau + b)/d} = e^{2\pi i b/d} q^{a/d}
\]
(two errors in the original)

Page 217, line 12: “some prime ideal of \(\mathcal{O} \)” should be “some prime ideal of \(\mathcal{O}_K \)”

Page 219, line -10: “of class field theory” should be “of complex multiplication”

Page 220, bottom line: “Re(\(\tau\)) \geq 0” should be “Re(\(\tau\)) \leq 0”

Page 221, second display: The display should be
\[
|b| \leq a \leq c, \text{ and } b \geq 0 \text{ if either } |b| = a \text{ or } a = c.
\]

Page 221, part (c) of Exercise 11.4: Replace the last sentence with “Furthermore, show that \(b = -2a \text{Re}(\tau)\) and \(c = a|\tau|^2\).”

Page 261, line 1 of part (a) of Exercise 12.31: “Prove that \(P = \sqrt{14}/2\alpha\) and \(Q = \sqrt{7}/2(\alpha/2)\)” should be “Prove that \(P = \sqrt{14}/\alpha\) and \(Q = \sqrt{7}/2\alpha\)”

Page 268, line 1: “compute \(H_D(X)\)” should be “compute \(H_D(X)\) for most \(D\)”

Page 268, line -15: “compute any \(H_D(X)\)” should be “compute \(H_D(X)\) for any \(D \neq -3k^2, k \text{ odd}\)”

Page 305, display of Exercise 14.7: In two places, “\(x + z\)” should be “\(x + 2\)” in the denominator.