Typographical Errors in the Second Edition of

Primes of the Form \(x^2 + ny^2 \)

August 1, 2020

Page v, line −8: The title of §1 should be “FERMAT, EULER AND QUADRATIC RECIPROCITY”

Page 30, first line of (2.21): “15.23” should be “15, 23”

Page 32, line 2 of Theorem 2.26: “not dividing \(D \)” should be “not dividing \(D \)” (the period should be a comma)

Page 48, line −13: “ker(\(\chi \)) \in (\mathbb{Z}/D\mathbb{Z})^∗” should be “ker(\(\chi \)) \subset (\mathbb{Z}/D\mathbb{Z})^∗”

Page 53, line −1: “property” should be “properly”

Page 61, part (a) of Exercise 3.9: “if and only if \(a, b \) or \(ab \) has order \(\leq 2 \) in \(G \)” should be “if and only if \(a \) or \(b \) has order \(\leq 2 \) in \(G \)”

Page 62, line 9: “that Proposition 3.11 and Theorem 3.15 hold for all” should be “that Proposition 3.11 holds for all”

Page 65, part (c) of Exercise 3.20: “\(f(\alpha x + \beta y, \gamma x + \delta y) \)” should be “\(f(\alpha x + \gamma y, \beta x + \delta y) \)”

Page 65, lines −2 and −1 : “Note also that Lemma 3.25 gives a very quick proof of Exercise 2.27” should be “Note that Lemma 3.25 gives a quick proof of Exercise 2.27(a) for forms of discriminant \(-4n \) when \(p \nmid n \)”

Page 75, line 18: “the second memoir. Gauss” should be “the second memoir, Gauss” (the period should be a comma)

Page 91, lines −4 and −3: “\(f_i(x) \) are distinct and irreducible modulo \(p \)” with “\(f_i(x) \) are monic, and distinct and irreducible modulo \(p \)”

Page 104, part (f) of Exercise 5.6: “\(p\mathcal{O}_L + f_i(\alpha)\mathcal{O}_K \)” should be “\(p\mathcal{O}_L + f_i(\alpha)\mathcal{O}_L \)”

Page 104, part (f) of Exercise 5.6: In the hint, “\(I_1 \cdots I_g \subset p\mathcal{O}_L \)” should be “\((p\mathcal{O}_L)^g \subset I_1 \cdots I_g \subset p\mathcal{O}_L \)”

Page 105, part (d) of Exercise 5.7: It should be “Prove the description of \(\mathcal{O}_K \) given in (5.14)”
Page 125, line −12: “let a be a fractional” should be “let a be a proper fractional”

Page 127, one line above (7.16): “a · a = α · a[α, τ]” should be “a · a = α · a[1, τ]”

Page 133, four lines below (7.26): “u ∈ O” should be “u ∈ O_K”

Page 133, line −4: “[b][c]−1” should be “±[b][c]−1”

Page 138, part (c) of Exercise 7.15, line 4: “dividing by a by c” should be “dividing a by c”

Page 143, line 1: “let f be a positive integer” should be “let f > 1 be an integer.”

Page 145, second display: “I_k(\m)/H” should be “I_k(\m)/H”

Page 146, line 15: “mth of unity” should be “mth root of unity”

Page 147, line 4: The citation [62, Chapter V, §6 and Theorem 12.7] refers to the first edition of [62]. For the second edition, the correct citation is [62, Chapter V, §6 and Theorem 11.11].

Page 151, last paragraph of the proof of Theorem 8.12: The proof has a gap. Weak Reciprocity does not apply to the modulus \(p^{\infty} \) since \(p \) is odd but Theorem 8.11 with \(n = 2 \) requires an even modulus. Thus the last paragraph of the proof should be replaced with the following:

To apply Theorem 8.11 when \(n = 2 \), the modulus must be divisible by 2. Since \(p \) is odd, \(\zeta_{2p} = -\zeta_p \), so \(\mathbb{Q}(\zeta_{2p}) = \mathbb{Q}(\zeta_p) \), and by (8.3) and (8.4), \(\text{Gal}(\mathbb{Q}(\zeta_{2p})/\mathbb{Q}) \) is a generalized ideal class group for the modulus \(2p^{\infty} \). It follows that Weak Reciprocity applies to \(K/\mathbb{Q} \) for this modulus. However, we have isomorphisms

\[
(\mathbb{Z}/p\mathbb{Z})^* \cong (\mathbb{Z}/2p\mathbb{Z})^* \cong I_\mathbb{Q}(2p^{\infty})/P_{\mathbb{Q},1}(2p^{\infty}),
\]

where the first map follows since \(p \) is odd \((a \text{ even } \Rightarrow a+p \text{ is odd}) \) and the second map sends \([a] \in (\mathbb{Z}/2p\mathbb{Z})^* \) to \([a\mathbb{Z}] \in I_\mathbb{Q}(2p^{\infty})/P_{\mathbb{Q},1}(2p^{\infty}) \) when \(a > 0 \) (see Exercise 8.7). Composing this map with (8.13) shows that \((p^*/\cdot)\) induces a surjective homomorphism from \((\mathbb{Z}/p\mathbb{Z})^* \) to \(\{\pm1\} \). But the Legendre symbol \((\cdot/p)\) is also a surjective homomorphism between the same two groups, and since \((\mathbb{Z}/p\mathbb{Z})^* \) is cyclic, there is only one such homomorphism. This proves that

\[
\left(\frac{p^*}{q}\right) = \left(\frac{q}{p}\right),
\]
and we are done. Q.E.D.

Page 155, lines −18 and −17: “But Exercise 5.9 tells us” should be “But [77, Exercise 4.11(b)] tells us”

Page 159, part (c) of Exercise 8.7: Delete the current part (c) and replace with the following:

(c) Verify the isomorphisms

\[(\mathbb{Z}/p\mathbb{Z})^* \cong (\mathbb{Z}/2p\mathbb{Z})^* \cong I_{\mathbb{Q}}(2p\infty)/P_{\mathbb{Q},1}(2p\infty)\]

described in the proof of Theorem 8.12.

Page 161, Exercise 8.13, last line: “\(N_{\mathfrak{p}}M = M\)” should be “\(N_{\mathfrak{p}}M = N_{\mathfrak{p}}\)”

Page 161, Exercise 8.16, line 2: “\(\tilde{S}_{M/L}\)” should be “\(\tilde{S}_{M/K}\)”

Page 161, Exercise 8.16, last line: “of Proposition 8.20” should be “of Proposition 8.20 and Exercise 8.15”

Page 165, line 1: “Lemma 5.21” should be “Corollary 5.21”

Page 167, line 3: “\(\text{Gal}(L/K) \cong \mathbb{Z}/3\mathbb{Z}\), then “\(\text{Gal}(L/\mathbb{Q}) \cong S_3\)” should be “\(\text{Gal}(M/K) \cong \mathbb{Z}/3\mathbb{Z}\), then “\(\text{Gal}(M/\mathbb{Q}) \cong S_3\)”

Page 167, line 9: “\(\sigma\) is real” should be “\(\alpha\) is real”

Page 169, line 1: Replace with “If \(\pi = a + bi\) is a primary prime of \(\mathbb{Z}[i]\), then”

Page 169, third display: “\(I_K(6)/P_{K,\mathbb{Z}}(6)\)” should be “\(I_K(6)/P_{K,1}(6)\)”

Page 186, line −1: At the end of the display, “\(z\varphi(z)\)” should be “\(2\varphi(z)\)”

Page 192, 4 lines below (10.19): “\(\pm(z + w_1)\)” should be “\(\pm(z + w_j)\)”

Page 197, Exercise 10.4, second line of the display: “\(+ \frac{24G_4(L)}{z^2}\)” should be “\(- \frac{24G_4(L)}{z^2}\)”

Page 199, part (b) of Exercise 10.16: “Theorem 5.25” should be “Theorem 5.30”
Page 199, part (c) of Exercise 10.16: In the display, \[
\sum_{f=1}^{[\mathcal{O}_K: \mathbb{Z}[\alpha]]} h(f^2 d_K)
\]
should be \[
\sum_{f\mid [\mathcal{O}_K: \mathbb{Z}[\alpha]]} h(f^2 d_K)
\]
Page 203, line -14: “\(\gamma \neq \pm 1\)” should be “\(\gamma \neq \pm I\)”

Page 208, line 10: The display should be
\[
q(\sigma \tau) = e^{2\pi i (a \tau + b) / d} = e^{2\pi ib/d} q^{a/d}
\]
(two errors in the original)

Page 208, line -7: “\(j(m\gamma_i, \gamma \tau)’s\)” should be “\(j(m\gamma_i \gamma \tau)’s\)”

Page 210, part (v) of Theorem 1.18: “\((X^p - Y)(X - Y^p)\)” should be “\((X^p - Y)(X - Y^p)\)” (two errors)

Page 217, line 12: “some prime ideal of \(\mathcal{O}\)” should be “some prime ideal of \(\mathcal{O}_K\)”

Page 219, line -10: “of class field theory” should be “of complex multiplication”

Page 220, Exercise 11.2: “use (7.9)” should be “use (7.10)”

Page 220, bottom line: “\(\text{Re}(\tau) \geq 0\)” should be “\(\text{Re}(\tau) \leq 0\)”

Page 221, second display: The display should be
\[
|b| \leq a \leq c, \text{ and } b \geq 0 \text{ if either } |b| = a \text{ or } a = c.
\]

Page 221, part (c) of Exercise 11.4: Replace the last sentence with
“Furthermore, show that \(b = -2a \text{Re}(\tau)\) and \(c = a|\tau|^2\).”

Page 221, bottom line: “Use (7.9)” should be “Use (7.10)”

Page 222, part (a) of Exercise 11.6: “\(\text{SL}(2, \mathbb{Z})\) and that” should be “\(\text{SL}(2, \mathbb{Z}), \gamma \neq \pm I, \text{ and that}\)”

Page 227, two lines below the statement of Theorem 12.2: At the end of the line, “by Theorem 12.2.” should be “by Theorem 12.2,”

Page 231, second display: “\(3\tau_0\)” should be “\(3\tau_0\)”

Page 236, three lines above Corollary 12.19: “see Exercise 2.16” should be “see Exercise 12.16”
Page 240, line 13: “Q(\sqrt{-14})” should be “Q(\sqrt{-14})”

Page 241, bottom line: “\(\zeta_d^a q^d = \zeta_b^a (q^{1/8})^{a^2}\)” should be “\(\zeta_d^a q^d = \zeta_b^a (q^{1/8})^{a^2}\)” (three errors)

Page 245, display (12.32): “\(\sigma(f_1(\sqrt{-14}/2)^2)\)” should be “\(\sigma(f_1(\sqrt{-14})^2)\)”

Page 250, bottom line: The display should be “\(S(a/b/c) = (\zeta_d^{ab}/\zeta_d^{ac})\)”

Page 251, line 2: The display should be “\(T^{\pm 1}(a/b/c) = (a \pm b/c)*\)”

Page 251, bottom line: “\(\gamma_3(3\tau)\)” should be “\(\gamma_2(3\tau)\)”

Page 255, part (a) of Exercise 12.14: On the last line of the display, “\(f(\tau)^2/\eta(\tau)^2\)” should be “\(f(\tau)^2/\eta(\tau)^2\)”

Page 257, part (b) of Exercise 12.23: Replace the hint with the following: “Hint: show that \(f_1(\tau)^6\) is a modular function for the group \(\bar{\Gamma}(8)\) defined in Exercise 12.21. Since \(\bar{\Gamma}(8)\) is normal in \(SL(2, \mathbb{Z})\), this implies that \(f(\tau)^6\) is also invariant under \(\bar{\Gamma}(8)\).”

Page 258, line 3 of part (e) of Exercise 12.23: “\(\sigma_1\) and \(\sigma_1\)” should be “\(\sigma_1\) and \(\sigma_2\)”

Page 259, part (b)(iii) of Exercise 12.28: In the Hint, “implies \(c = 3\)” should be “implies \(b = c = 1\)”.

Page 260, part (c)(iii) of Exercise 12.28: Replace the hint with the following: “Hint: Analyze \(gcd(p^2 + 3q^2, 2pq)\) and use the formula for \(\frac{p}{k}\) to conclude that \(2n \geq p^2 + 3q^2\). Also note that the result of (ii) implies \(p^2 + 3q^2 = u^2 - 3tu + 3t^2\) and recall that \(n\) divides \(b\).”

Page 261, line 1 of part (a) of Exercise 12.31: “Prove that \(P = \sqrt{14}/(2/\alpha)\) and \(Q = \sqrt{7/2}/(\alpha/2)\)” should be “Prove that \(P = \sqrt{14}/\alpha\) and \(Q = \sqrt{7/2}/2\alpha\)”

Page 268, line 1: “compute \(HD(X)\)” should be “compute \(HD(X)\) for most \(D\)”

Page 268, line -15: “compute any \(HD(X)\)” should be “compute \(HD(X)\) for any \(D \neq -3k^2, k \text{ odd}\)”
Page 278, part (b) of Exercise 13.6: In four places, \(\zeta^{ab}_m\) should be \(\zeta^{-ab}_m\).

Page 280, line 2 of part (a) of Exercise 13.15: “congrunce” should be “congruence”.

Page 281, line 1 of part (e) of Exercise 13.16: “\(\epsilon(p) = 1\)” should be “\(\epsilon(p) = -1\)”.

Page 287, display (14.7): In the second line of the display, “12\(x_1 - g_2\)” should be “12\(x_1^2 - g_2\)”.

Page 288, three lines above third display: “the order” should be “order”.

Page 293, two lines below third display: “Exercise 4.13” should be “Exercise 14.13”.

Page 294, line 2: “discriminant” should be “discriminant when \(a \neq 0\)”.

Page 296, line 8: “2\(\sqrt{p} \leq a \leq 2\sqrt{p}\)” should be “\(-2\sqrt{p} \leq a \leq 2\sqrt{p}\)”.

Page 296, display (14.21): The summation should be “\(\sum_{0 \leq |a| \leq 2\sqrt{p}} \)”.

Page 296, display following (14.21): The first summation should be “\(\sum_{0 \leq |a| \leq 2\sqrt{p}} \)”.

Page 305, display of Exercise 14.7: In two places, “\(x + z\)” should be “\(x + 2\)” in the denominator.

Page 305, Exercise 14.8: “curve the finite field” should be ”curve over the finite field”.

Page 306, display of Exercise 14.12: “\(Frob_q\)” should be “\(1 - Frob_q\)”.

Page 306, Exercise 14.15: “discriminant” should be “conductor”.

Page 312, line below (15.10): “\(\gamma_p \in \prod_p \text{GL}(2, \mathbb{Z}_p)\)” should be “\(\gamma_p \in \text{GL}(2, \mathbb{Z}_p)\)”.

Page 313, line -3: “\((I_L(fm) \cap P_{K,\mathbb{Z}}(f))\)” should be “\((I_K(fm) \cap P_{K,\mathbb{Z}}(f))\)”.

Page 315, six lines above Theorem 15.16: “Theorem 7.7” should be “Lemma 7.5”.
Page 317, fourth line of the proof of **Theorem 15.18**: “Theorem 15.17” should be “Theorem 15.16”

Page 317, seventh line of the proof of **Theorem 15.18**: “±1, 3 and 1 + \(\sqrt{-m}\)” should be “−1, 3 and 1 + \(\sqrt{-m}\)"

Page 318, display (15.19): “\(m \equiv 6 \text{ mod } 8\)” should be “\(m \equiv 6 \text{ mod } 8\) and 3 \(\nmid m\)”

Page 318, two lines below display (15.19): “\(m \equiv 3 \text{ mod } 8\)” should be “\(m \equiv 3 \text{ mod } 4\) and 3 \(\nmid m\)”

Page 328, line 5: “invariant under \(\Gamma(8)\) using (12.26)” should be “invariant under the group \(\tilde{\Gamma}(8)\) from Exercise 12.21 using (12.26). Note also that \(\Gamma(8) \subseteq \tilde{\Gamma}(8)\)”

Page 329, part (c) of Exercise 15.5: “for \(a \in \mathbb{Z}\) relatively prime to \(fm\)” with “for \(a \in \mathbb{Z}\) and \(\alpha\) relatively prime to \(fm\)”

Page 330, line 1 of Exercise 15.9: “\(m \equiv 3 \text{ mod } 8\)” should be “\(m \equiv 3 \text{ mod } 4\) and 3 \(\nmid m\)”

Page 330, line 2 of Exercise 15.9: “\(f(\sqrt{-m})^6\)” should be “\(f(\sqrt{-m})^6\)”

Page 330, line 3 of Exercise 15.9: Add a new sentence: “Do the cases \(m \equiv 3 \text{ mod } 8\) and \(m \equiv 7 \text{ mod } 8\) separately.”