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What is a Tori Variety?David CoxAbstrat. This paper is a tutorial in the basi theory of tori varieties. Itdisusses their de�nition using fans, homogeneous oordinates, and polytopes.Numerous examples are inluded.IntrodutionTori varieties were �rst de�ned in the 1970s and have beome an importantpart of algebrai geometry. They an be used in many di�erent geometri situationsyet also have interesting onnetions with ombinatoris and onvex polytopes.This artile is an introdution to tori varieties for non-speialists. Many ex-amples are given to illustrate the various de�nitions. The paper is organized into14 setions as follows:1. Varieties2. Tori Varieties3. Examples of Tori Varieties4. Cones5. AÆne Tori Varieties6. Coordinate Rings7. Normality8. Fans and Tori Varieties9. Properties of Tori Varieties10. Homogeneous Coordinates11. Examples of Homogeneous Coordinates12. The Tori Variety of a Polytope13. Polytopes and Homogeneous Coordinates14. Bibliography 1. VarietiesWe will work over the omplex numbers C . Basi examples of varieties are:� AÆne spae C n and aÆne varietiesV = V(f1; : : : ; fs) � C n1991 Mathematis Subjet Classi�ation. 14M25. 0000 (opyright holder)1



2 DAVID COXde�ned by the polynomial equations f1 = � � � = fs = 0.� Projetive spae Pn and projetive varietiesV = V(F1; : : : ; Fs) � Pnde�ned by the homogeneous equations F1 = � � � = Fs = 0.In this artile, most varieties will be either aÆne or projetive.Example 1.1. Let C � = C n f0g = fz 2 C j z 6= 0g. Then (C � )n � C n is anaÆne variety sine the map (t1; : : : ; tn) 7! (t1; : : : ; tn; 1=t1 � � � tn) gives(C � )n ' V(x1x2 � � �xn+1 � 1) � C n+1 :In the theory of algebrai groups, (C � )n is alled the n-dimensional omplex torus.This is where the \tori" in \tori variety" omes from. �Given varieties W � V , we all the omplement V nW = fv 2 V j v =2 Wga Zariski open subset of V . These are the points of V where one or more of thede�ning equations of W don't vanish.Example 1.2. Notie that (C � )n � C nis a Zariski open sine (C � )n = C n nV(x1 � � �xn). �A variety V is irreduible if it annot be written as union V = V1 [ V2 whereV1 6= V and V2 6= V are varieties.2. Tori VarietiesDefinition 2.1. A tori variety is an irreduible variety V suh that(1) (C � )n is a Zariski open subset of V , and(2) the ation of (C � )n on itself extends to an ation of (C � )n on V .We will see later that the theory of tori varieties works best when V is normal(we defer the de�nition of normality sine it is somewhat tehnial). Here are themost basi examples of tori varieties.Example 2.2. (C � )n and C n are learly tori varieties. As for Pn, supposethat x0; : : : ; xn are homogeneous oordinates on Pn. The map(C � )n �! Pnde�ned by (t1; : : : ; tn) 7! (1; t1; : : : ; tn) allows us to identify (C � )n with the Zariskiopen subset Pn nV(x0x1 � � �xn). Then setting(t1; : : : ; tn) � (a0; a1; : : : ; an) = (a0; t1a1; : : : ; tnan)shows that Pn is a tori variety. �In studying tori varieties, points a = (a1; : : : ; an) 2 Zn play two importantroles: � First, a Laurent monomial is de�ned byta = ta11 � � � tann :Note that ta gives a funtion (C � )n ! C � . In the theory of algebraigroups, this is alled a harater. The C -linear span of all Laurent mono-mials is the ring C [t1 ; t�11 ; : : : ; tn; t�1n ℄ of Laurent polynomials.



WHAT IS A TORIC VARIETY? 3� Seond, a 1-parameter subgroup �a : C � ! (C � )n is de�ned by�a(t) = (ta1 ; : : : ; tan):In general, a tori variety V onsists of (C � )n plus some \extra stu�." WhenV is aÆne, we will see that the \extra stu�" is determined by whih Laurentmonomials tm are de�ned on V . Here is an example.Example 2.3. Consider the tori variety C n . The one easily sees that theLaurent monomial tm = tm11 � � � tmnn determined bym = (m1; : : : ;mn) 2 Zn extendsto a funtion C n ! C if and only if mi � 0 for all i. Below we will onstrut C nusing only these Laurent monomials in Zn. �3. Examples of Tori VarietiesBesides the basi examples of tori varieties given above, we also have thefollowing.Example 3.1. If V and W are tori varieties, then so is V �W . This shows,for instane, that P1 � P1 is a tori variety. �Example 3.2. Consider the uspidal ubi C = V(y2�x3) � C 2 . This ontainsC � via the map t 7! (t2; t3), and C � ats on C via t � (u; v) = (t2u; t3v). �The previous example is interesting beause it is a non-normal tori variety. Indimension one, the only normal tori varieties are C � , C and P1.Example 3.3. Consider V = V(xy� zw) � C 4 . This ontains the torus (C � )3via the map (t1; t2; t3) 7! (t1; t2; t3; t1t2t�13 ):Question: Whih Laurent monomials tm extend to funtions V ! C ? If m =(a; b; ) 2 Z3, then we get the funtion on V de�ned by xaybz. If a; b;  � 0, thenthis ertainly extends. However, suppose that  < 0 and a + ; b +  � 0. Then,sine xy = zw on V , we havexaybz = xayb�xyw � = xa+yb+w�;whih shows that tm extends to a funtion V ! C . We will see below that theinequalities(3.1) a � 0; b � 0; a+  � 0; b+  � 0de�ne the dual one orresponding to the normal aÆne tori variety V . �Example 3.4. Let's show that (C � )2 � P2 gives the following piture in R2 :
(3.2) ������



4 DAVID COXA 1-parameter subgroup u 2 Z2 gives a map �u : C � ! P2. Sine P2 is ompat,the limit limt!0 �u(t)exists in P2. If u = (a; b) 2 Z2, then�u(t) = (1; ta; tb):It is then straightforward to ompute that
(3.3) limt!0�u(t) = limt!0(1; ta; tb) = 8>>>>>>>>>><>>>>>>>>>>:

(1; 0; 0) a; b > 0(1; 0; 1) a > 0; b = 0(1; 1; 0) a = 0; b > 0(1; 1; 1) a = b = 0(0; 0; 1) a > b; b < 0(0; 1; 0) a < 0; a < b(0; 1; 1) a < 0; a = b:The �rst four ases are trivial. To see how the �fth ase works, note thatlimt!0(1; ta; tb) = limt!0(t�b; ta�b; 1)sine these are homogeneous oordinates. Then a > b and b < 0 imply that thelimit is (0; 0; 1), as laimed. The last two ases are similar.Now observe that (3.2) deomposes the plane into 7 disjoint regions:� The open sets a; b > 0; a < 0; a < b; and a > b; b < 0.� The open rays a > 0; b = 0; a = 0; b > 0; and a < 0; a = b.� The point a = b = 0.The orresponds perfetly with (3.3). We will see below that (3.2) is the fan or-responding to the tori variety P2. �4. ConesA rational polyhedral one � � Rn is a one generated by �nitely many elementsof Zn: � = ��1u1 + � � �+ �`u` 2 Rn j �1; : : : ; �` � 0	;where u1; : : : ;u` 2 Zn. Then:� � is strongly onvex if � \ (��) = f0g.� The dimension of � is the dimension of the smallest subspae of Rn on-taining �.� A fae of � is the intersetion f` = 0g \ �, where ` is a linear form whihis nonnegative on �.� The edges of � are its 1-dimensional faes. Edges are denoted by �. Theprimitive element n� of an edge � is the unique generator of � \Zn. Theone � is generated by the primitive elements n� of its edges �.� The faets of � are its odimension-1 faes. When dim � = n, eah faethas an inward pointing normal whih is an element of Rn . We get a uniqueinward normal by requiring that it is in Zn and has minimal length.



WHAT IS A TORIC VARIETY? 5Definition 4.1. If � � Rn be a strongly onvex rational polyhedral one, thenits dual one �_ � Rn is�_ = �m 2 Rn j hm;ui � 0 for all u 2 �	;where hm;ui is the usual dot produt on Rn . This is a rational polyhedral one ofdimension n.Here is an example of a one and its dual.Example 4.2. Consider the one � � R3 pitured below:
c

b

aThis one is generated by the primitive elements(4.1) n1 = (1; 0; 0); n2 = (0; 1; 0); n3 = (1; 0; 1); n4 = (0; 1; 1)in Z3, and the inward pointing normals of the faets of � are(4.2) m1 = (1; 0; 0); m2 = (0; 1; 0); m3 = (0; 0; 1); m4 = (1; 1;�1)in Z3. It follows that these generate the dual one �_ in R3 . Thus (a; b; ) 2 �_ ifand only if a � 0; b � 0; a+  � 0; b+  � 0These are preisely the inequalities (3.1). �5. AÆne Tori VarietiesLet � � Rn be a strongly onvex rational polyhedral one with dual one�_ � Rn . Our goal is to show that this determines a normal aÆne tori varietyU�. The basi idea is as follows. We all m 2 �_ \ Zn a lattie point of �_. Eahlattie point m 2 �_ \ Zn gives a Laurent monomial tm. Then U� should be thethe smallest variety on whih these Laurent monomials are de�ned everywhere.We will onstrut U� using Gordan's Lemma, whih implies that �_ \ Zn is�nitely generated. In other words, there are m1; : : : ;m` 2 �_ \Zn suh that everyelement of �_ \Zn is of the form(5.1) a1m1 + � � �+ a`m`; ai 2 Z; ai � 0:



6 DAVID COXThe generators m1; : : : ;m` determine the aÆne variety U� � C ` as follows. Con-sider(5.2) ' : (C � )n �! C `de�ned by '(t1; : : : ; tn) = �tm1(t1; : : : ; tn); : : : ; tm`(t1; : : : ; tn)�:Then U� � C ` is the Zariski losure of the image of this map. This means that U�is the smallest variety ontaining the image of (5.2).One an prove that the map (C � )n ! U� indued by (5.2) is an inlusion andmakes U� into a tori variety. Furthermore:� By (5.2), tmi extends to the funtion U� ! C given by the projetion ofU� � C ` onto the ith oordinate. Thus tmi is de�ned on all of U�.� Sine every m 2 �_ \ Zn is of the form (5.1), it follows that tm extendsto a funtion on U� .� U� is the smallest variety where the tm are de�ned sine it is the Zariskilosure of (5.2).We say that U� is the normal aÆne tori variety determined by the stritly onvexrational polyhedral one �. Normality will be explained in Setion 7.Here is an easy example.Example 5.1. First onsider the n-dimensional one � generated by the stan-dard basis e1; : : : ; en of Zn. Thus � is the \�rst orthant" of Rn where all oordi-nates are nonnegative. Then �_ has the same desription in Rn , so that e1; : : : ; engenerate �_ \ Zn over Z�0. Sine tei = ti, it follows that (5.2) is the inlusion(C � )n � C n . This gives U� = C n . �By (5.2), U� � C ` is the variety of C ` whose de�ning equations are determinedby the algebrai relations among the tmi . Here is an example to illustrate whatthis means.Example 5.2. Consider the one � � R3 pitured in Example 4.2. It is easyto see that that the generators of �_ \Z3 are the vetorsm1 = (1; 0; 0); m2 = (0; 1; 0); m3 = (0; 0; 1); m4 = (1; 1;�1):from (4.2). Thus (5.2) is de�ned by(5.3) (t1; t2; t3) 7! (tm1 ; tm2 ; tm3 ; tm4) = (t1; t2; t3; t1t2t�13 ) 2 C 4 :If x; y; z; w are variables on C 4 , then tm1tm2 = t1t2 = t3(t1t2t�13 ) = tm3tm4 impliesthat xy� zw vanishes on the image of (5.3). It follows that U� � V(xy� zw), andin fat, one an show that U� = V(xy � zw) � C 4 :This gives the tori variety from Example 3.3.The vanishing of xy � zw on U� follows from the relation m1 +m2 = m3 +m4 between the generators of �_ \ Z3. Thus the ideal hxy � zwi de�ning U� isdetermined by the integer linear relations among the mi. This is true in generaland is related to the theory of tori ideals to be disussed in the artile [24℄ byFrank Sottile in this volume. �



WHAT IS A TORIC VARIETY? 76. Coordinate RingsIn algebrai geometry, the ring of polynomial funtions on an aÆne variety isalled the oordinate ring of the aÆne variety. For example, the oordinate ring ofC n is C [x1 ; : : : ; xn℄.For an aÆne tori variety U�, we an give an espeially nie desription ofthe oordinate ring. Namely, eah m 2 �_ \ Zn gives the Laurent monomialtm 2 C [t1 ; t1�1; : : : ; tn; t�1n ℄. Then onsider(6.1) Span(tm jm 2 �_ \ Zn) � C [t1 ; t�11 ; : : : ; tn; t�1n ℄:This is a ring sine m;m0 2 �_ \ Zn implies m+m0 2 �_ \Zn, so that if tm andtm0 are in (6.1), then the produt tmtm0 = tm+m0 is too.In the language of semigroup algebras, the ring (6.1) is denotedC [�_ \ Zn℄:This is the notation used in the literature on tori varieties. The previous setionshows that every Laurent monomial in this ring gives a polynomial funtion on U�and hene lies in the oordinate ring of U�. In fat, one an prove thatC [�_ \Zn℄ = the oordinate ring of U�:Also note that if m1; : : : ;m` 2 �_ \Zn generate �_ \Zn in the sense of (5.1), thenC [�_ \ Zn℄ = C [tm1 ; : : : ; tm` ℄ � C [t1 ; t�11 ; : : : ; tn; t�1n ℄:Thus the oordinate ring onsists of all polynomial expressions in the Laurent mono-mials tmi . Here is an example.Example 6.1. For the one � of Example 5.2, the Laurent monomials appear-ing in (5.3) show thatC [�_ \Z3℄ = C [t1 ; t2; t3; t1t2t�13 ℄ � C [t1 ; t�11 ; t2; t�12 ; t3; t�13 ℄:This gives an expliit representation of the oordinate ring of U� in this ase. �7. NormalityA variety is normal if its loal rings are integrally losed in their �elds offrations. This de�nition is unlikely to be helpful to the nonexpert. Our goal hereis to desribe what normality means for aÆne tori varieties. The key point is thatthe aÆne tori variety U� de�ned in the previous setion is always normal.To motivate our disussion, onsider the following example.Example 7.1. Here is a one and its dual:
The cone σ The cone σ∨



8 DAVID COXThe generators of �_ \ Z2 are mi = (1; i) for i = 0; : : : ; 4. It follows that U� � C 5is the Zariski losure of the image of the parametrization (C � )2 ! C 5 de�ned by(7.1) (t; u) 7! (t; tu; tu2; tu3; tu4):What happens if we only use some of these monomials? Here are two things whihan our.First, suppose we use only m0 = (1; 0) and m4 = (1; 4). Over R�0 , thesegenerate �_ and give the map (C � )2 ! C 2 de�ned by(7.2) (t; u) 7! (t; tu4):The Zariski losure of the image is C 2 , but (7.2) is 4-to-1. One an show that thishappens beause m0 and m4 do not generate Z2 over Z. The point is, an aÆnetori variety involves both a one and a lattie. So m0 and m4 don't work beausethey mess up the lattie, even though they do generate the dual one.Seond, suppose we use m0 = (1; 0), m1 = (1; 1) and m4 = (1; 4). Theygenerate the dual one over R�0 and give the map (C � )2 ! C 3 de�ned by(7.3) (t; u) 7! (t; tu; tu4):This map is 1-to-1, whih is easy to see diretly and also beause m0, m1 and m4generate the lattie Z2. However, one an ompute that the Zariski losure of theimage of (7.3) is y4 = x3z. It is also straightforward to show that the singular lousof this surfae is the line x = y = 0. Sine the singular lous of a normal varietyhas odimension at least 2, it follows that this variety is not normal. Thus we havean example of a non-normal tori variety. �In the above example, the normal tori variety U� determined by the one �and lattie Z2 was onstruted as the Zariski losure of the map (7.1) from (C � )2to C 5 . Then (7.2) and (7.3) are other tori varieties obtained by projeting U� toC 2 and C 3 respetively. These projetions are not the normal tori variety for �and Z2, beause:� In (7.2), we kept the dual one but hanged the lattie.� In (7.3), we kept the lattie and the dual one, but lost normality.As we will see below, the key reason for the seond bullet is that m0, m1 and m4do not generate �_ \Z2 over Z�0.To generalize this example, let � � Rn be a strongly onvex rational polyhedralone, and suppose that we have emi 2 �_ \Zn for i = 1; : : : ; s. Then, using the t emias in (5.2), we get a map(7.4) (C � )n �! C s :Theorem 7.2. The Zariski losure of the image of (7.4) is the normal aÆnetori variety U� determined by � and Zn if and only if �_ \ Zn is generated overZ�0 by emi for i = 1; : : : ; s.Thus an aÆne tori variety is normal preisely when you use all lattie pointsin the dual one. 8. Fans and Tori VarietiesWe next reate more general normal tori varieties by gluing together aÆnetori varieties ontaining the same torus (C � )n. This brings us to the onept of a



WHAT IS A TORIC VARIETY? 9fan, whih is de�ned to be a �nite olletion � of ones in Rn with the followingthree properties:� Eah � 2 � is a strongly onvex rational polyhedral one.� If � 2 � and � is a fae of �, then � 2 �.� If �; � 2 �, then � \ � is a fae of eah.Eah � 2 � gives an aÆne tori variety U� , and if � is a fae of �, then U� an beregarded as a Zariski open subset of U� . This leads to the following de�niton.Definition 8.1. Given a fan � in Rn , X� is the variety obtained from theaÆne varieties U�, � 2 �, by gluing together U� and U� along their ommon opensubset U�\� for all �; � 2 �.The inlusions (C � )n � U� are ompatible with the identi�ations made in re-ating X�, so that X� ontains the torus (C � )n as a Zariski open set. Furthermore,one an show that X� is a normal tori variety and that all normal tori varietiesarise in this way, i.e., every normal tori variety is determined by a fan.The tori variety X� is an example of an abstrat variety. In partiular, it anhappen that X� is neither aÆne nor projetive.Here are some examples of tori varieties.Example 8.2. Given � � Rn , we get a fan by taking all faes of � (inluding� itself). The tori variety of this fan is the aÆne tori variety U�. �Example 8.3. The fan for P1 is as follows:tThe ones �1 = [0;1) and �2 = (�1; 0℄ give U�1 with oordinate ring C [t℄ andU�2 with oordinate ring C [t�1 ℄, whih path in the usual way to give P1. �Example 8.4. Let e1; : : : ; en be the standard basis of Zn, and set e0 = �e1 �� � � � en. Then we get a fan by taking the ones generated by all proper subsetsof fe0; e1; : : : ; eng. You should hek that the assoiated tori variety is Pn. Whenn = 2, this gives the fan (3.2). �Example 8.5. The fan for P1 � P1 is as follows:
In this �gure, the 1-dimensional ones are four rays emanating from the origin andthe 2-dimensional ones are the four quadrants. Thus the fan for P1 � P1 has four2-dimensional ones �1; : : : ; �4. The aÆne tori varieties U�i ' C 2 glue together inthe usual way to give P1 � P1. �There are many other nie examples of tori varieties. Later in this artile wewill see that every lattie polytope in Rn determines a projetive tori variety.



10 DAVID COX9. Properties of Tori VarietiesThe fan � has a lose relation to the struture of tori variety X�. The basiidea is that there are one-to-one orrespondenes between the following objets:� The limits limt!0 �u(t) for u 2 j�j = S�2� � (j�j is the support of �).� The ones � 2 �.� The orbits of the torus ation on X�.The orrespondenes is as follows: an orbit orresponds to a one � if and only iflimt!0 �u(t) exists and lies in the orbit for all u in the relative interior of �. Foran orbit orb(�), we have:� dim� + dimorb(�) = n.� orb(�) � orb(�) if and only if � � �.In partiular, the �xed points of the torus ation orrespond to the n-dimensionalones in the fan. It is a good exerise verify all of this for P2 and the fan drawn inExample 8.5.We next disuss some basi properties of tori varieties. First, we need someterminology:� A one is smooth if it is generated by a subset of a basis of Zn.� A one is simpliial if it is generated by a subset of a basis of Rn .Then we have the following result.Theorem 9.1. Let X� be the tori variety determined by a fan � in Rn . Then:(1) X� is ompat () its support j�j = S�2� � is all of Rn .(2) X� is smooth () every � 2 � is smooth.(3) X� has at worst �nite quotient singularities () every � is simpliial.(Suh tori varieties are alled simpliial.)Sine 2-dimensional ones are simpliial, tori surfaes have at worst �nitequotient singularities. Furthermore, the �nitely many singular points orrespondto 2-dimensional ones whose minimal generators do not span Z2 over Z.10. Homogeneous CoordinatesWe next desribe homogeneous oordinates for tori varieties. Homogeneousoordinates on Pn give not only the graded ring C [x0 ; : : : ; xn℄ but also the quotientonstrution Pn ' (C n+1 n f0g)=C � . Given a tori variety X�, we generalize thisas follows. Let �1; : : : ; �r be the 1-dimensional ones of � and let ni 2 Zn denotethe primitive element of �i (= generator of �i \ Zn). Then introdue variables xifor i = 1; : : : ; r. The goal is to represent X� as the quotient(10.1) X� = (C r n Z)=Gfor some variety Z � C r and some group G � (C � )r.We de�ne Z as follows. For eah one � 2 �, we get the monomialx�̂ =Qni =2�xiwhih is the produt of all variables not oming from edges of �. Then de�neZ = V(x�̂ j � 2 �) � C r :In fat, Z an be de�ned using only those x�̂ whih orrespond to maximal onesof � (= those ones not ontained in any larger one).



WHAT IS A TORIC VARIETY? 11Example 10.1. For Pn, the ni onsist of the standard basis e1; : : : ; en pluse0 = �Pni=1. This gives variables x0; : : : ; xn. Furthermore, the maximal ones ofthe fan are generated by the n-element subsets of fe0; : : : ; eng. It follows thatZ = V(x0; : : : ; xn) = f(0; : : : ; 0)g � C n+1 :This of ourse is what we want for Pn. �There is another desription of Z due to Batyrev whih is useful in pratie.We say that a set of edge generators fni1 ; : : : ;nisg is primitive if they don't lie inany one of � but every proper subset does. Then one an show thatZ = [fni1 ;:::;nisg primitiveV(xi1 ; : : : ; xis):This shows that Z is a union of oordinate subspaes.Example 10.2. Consider the fan for P1 � P1, where we have indiated theminimal generators n1 = e1;n2 = �e1;n3 = e2;n4 = �e2.n2r n1rrrn4n3The only primitive sets are fn1;n2g and fn3;n4g. It follows thatZ = V(x1; x2) [V(x3; x4) = �f(0; 0)g � C 2� [ �C 2 � f(0; 0)g� � C 4 :This will be useful shortly. �We next desribe the group G. This is the subgroup of (C � )r de�ned byG = f(�1; : : : ; �r) 2 (C � )r jQri=1�hm;niii = 1 for all m 2 Zng:However, it suÆes to let m be the standard basis elements e1; : : : ; en. Thus(�1; : : : ; �n) 2 G if and only if(10.2) Qri=1�he1;niii =Qri=1�he2;niii = � � � =Qri=1�hen;niii = 1:Here are some examples.Example 10.3. For Pn, Example 10.1 showed that the ni are given by e0 =�Pni=1 ei, e1; : : : ; en. By (10.2), it follows that (�0; : : : ; �n) 2 G if and only if��10 �1 = ��10 �2 = � � � = ��10 �n = 1:Thus G = f(�; : : : ; �) 2 (C � )n+1g ' C � . This gives the usual ation of C � on C n+1 .Sine we know Z from Example 10.1, the quotient representation (10.1) beomesPn = (C n+1 n f0g)=C � ;whih is the usual way of expressing Pn as a quotient. �



12 DAVID COXExample 10.4. For P1�P1, Example 10.2 showed that n1 = e1;n2 = �e1;n3 =e2;n4 = �e2. By (10.2), it follows that (�1; �2; �3; �4) 2 G if and only if�1��12 = �3��14 = 1:Hene G = f(�; �; �; �) 2 (C � )4g ' (C � )2. Sine we know Z from Example 10.2,the quotient representation (10.1) beomes(10.3) P1 � P1 = �C 4 n �f(0; 0)g � C 2� [ �C 2 � f(0; 0)g��Æ(C � )2:This might look ompliated, but sine P1 = (C 2 n f(0; 0)g)=C � , we haveP1 � P1 = �(C 2 n f(0; 0)g)=C ��� �(C 2 n f(0; 0)g)=C ��:This easily redues to the quotient (10.3). �Here is a preise statement of the quotient representation (10.1).Theorem 10.5. If X� is a tori variety where n1; : : : ;nr span Rn , then:(1) X� is the universal ategorial quotient (C r n Z)=G.(2) X� is a geometri quotient (C r n Z)=G if and only if X� is simpliial.This result was disovered independently by several people in the early 1990s(see [20℄). Also note that the theorem uses the terms \universal ategorial quo-tient" and \geometri quotient". The latter is the algebro-geometri analog of theusual idea of the quotient under a group ation. As we will see in the next setion,universal ategorial quotient are not as well-behaved. Tori surfaes are alwayssimpliial, so that (C r n Z)=G is always a geometri quotient in this ase.While we won't prove Theorem 10.5, we should at least explain why the quotient(C r n Z)=G ontains the torus (C � )n. For this, onsider the map(10.4) (C � )r �! (C � )nwhih sends (�1; : : : ; �r) to (t1; : : : ; tn), where(10.5) tj = rYi=1�hej ;niii ; ej = jth standard basis vetor:Then one an show that (10.4) is onto when n1; : : : ;nr span Rn as in Theorem 10.5.Furthemore, (�1; : : : ; �r) is in the kernel of (10.4) preisely when tj = 1 for all j.Comparing (10.5) and (10.2), it follows that the kernel is the group G. Thus wehave an isomorphism (C � )n ' (C � )r=G;so that the inlusion (C � )r � C r n Z indues(C � )n ' (C � )r=G � (C r n Z)=G = X�:This explains why the quotient ontains (C � )n. Furthermore, sine the \big" torus(C � )r ats naturally on C r n Z, it follows that (C � )n ats on the quotient. Thus(C r nZ)=G is a tori variety, and it is also normal sine ategorial quotients preservenormality. In fat, one an de�ne X� to be the quotient (C r n Z)=G.We onlude this setion with a disussion of the polynomial ringS = C [x1 ; : : : ; xr℄:



WHAT IS A TORIC VARIETY? 13The key observation is that the ation of G indues a natural grading on this ring.If f = f(x1; : : : ; xr) 2 S and (�1; : : : ; �r) 2 G, then (�1; : : : ; �r) ats on f via(�1; : : : ; �r) � f = f(�1x1; : : : ; �rxr):As we will see, this indues a grading on S.Example 10.6. For Pn, the ation of G on a monomial is given by(�; : : : ; �) � xa00 � � �xann = (�x0)a0 � � � (�xn)an = �a0+���+anxa00 � � �xann :We say that xa00 � � �xann has degree a0 + � � � + an, so that in partiular, the xi allhave degree 1. This is the usual grading on S = C [x0 ; : : : ; xn℄. �Example 10.7. For P1 � P1, the ation of G on a monomial is given by(�; �; �; �) � xa1xb2x3xd4 = (�x1)a(�x2)b(�x3)(�x4)d = �a+b�+dxa1xb2x3xd4:We say that xa1xb2x3xd4 has degree (a + b;  + d), so that in partiular, x1; x2 havedegree (1; 0) and x3; x4 have degree (0; 1). This is the usual bigrading on S =C [x1 ; x2; x3; x4℄. �In general, S = C [x1 ; : : : ; xr℄ has a grading so that two monomials have thesame degree if and only if G ats on them in the same way. One an prove thatdeg(xa11 � � �xarr ) = deg(xb11 � � �xbrr ) ()there is m 2 Zn suh that ai = bi + hni;mi for all i:With this grading, we all S = C [x1 ; : : : ; xr℄ the homogeneous oordinate ring ofX�, and f 2 S is homogeneous if all monomials appearing in f have the samedegree in the above sense.We will give some surprising examples of degrees in the next setion.11. Examples of Homogeneous CoordinatesOur �rst example shows that variables an have negative degree.Example 11.1. We will onstrut global oordinates for the blow-up of 0 2 C n .Let e1; : : : ; en be the standard basis of Zn and let � = Rn�0 be the one theygenerate. The resulting aÆne tori variety is C n . Then set e0 = e1 + � � �+ en andonsider the fan � whose ones are generated by all proper subsets of fe0; : : : ; eng,exluding fe1; : : : ; eng. We will prove that X� is the blow-up of 0 2 C n using thequotient representation (10.1). Let xi be the variable orresponding to the edgegenerated by ei for i = 0; : : : ; n.We begin with Z. The only primitive set is fe1; : : : ; eng, so thatZ = V(x1; : : : ; xn) = C � f0g � C � C n = C n+1 :As for G, the methods of the previous setion show that (�0; : : : ; �n) 2 G if andonly if �0�1 = �0�2 = � � � = �0�n = 1:sine e0 = e1 + � � �+ en. Hene G = f(��1; �; : : : ; �) 2 (C � )n+1g ' C � , so that C �ats on C n+1 = C � C n by � � (x0;x) = (��1x0; �x):



14 DAVID COXIt follows that the homogeneous oordinate ring of X� is C [x0 ; : : : ; xn℄ wheredeg(x0) = �1 and deg(xi) = +1 for 1 � i � n. Furthermore, we get the quo-tient representationX� = �(C � C n ) n (C � f0g)�=C � = �C � (C n n f0g)�=C � ;where C � ats as above.To analyze this quotient, take (x0;x) 2 C � (C n nf0g. We an at on this pointusing G to obtain x�10 � (x0;x) = (1; x0x) if x0 6= 0� � (0;x) = (0; �x) if � 6= 0:In the �rst line, x0x 6= 0, so the part of the quotient where x0 6= 0 is learly C n nf0g.In the seond line, we see that the part of the quotient where x0 = 0 is Pn�1. Notealso that the map X� ! C n given by (x0; x1; : : : ; xn) 7! (x0x1; : : : ; x0xn) is well-de�ned sine x0xi has degree 0 and hene is invariant under the group ation. Itfollows that X� is the blow-up of 0 2 C n . �If � is an n-dimensional one in Rn , then the representation of U� given by(10.1) is of the form C r=G, where r is the number of edges of �. This followsbeause Z = ; sine a single one has no primitive sets. Furthermore, there aretwo ases where G an be determined expliitly:� For � smooth, G = f1g, so that (10.1) gives U� = C n .� For � simpliial, G ' Zn=(Zn1+ � � �+ Zn`), so that aording to (10.1),U� = C n=G is the quotient of C n by the �nite group G.Here is an example of the seond bullet.Example 11.2. Let � � R2 be the one generated by n1 = (1; 0) and n2 =(1; 2). What is the tori variety U�? As above, we know that Z = ;, and by (10.2),(�1; �2) 2 G if and only if �1�2 = �22 = 1:Thus G = f�(1; 1)g � (C � )2, so that G ' f�1g ats on a monomial via�1 � xa1xb2 = (�1x1)a(�1x2)b = (�1)a+bxa1xb2:It follows that the homogeneous oordinate ring is C [x1 ; x2℄, where x1; x2 havedegree 1 mod 2. Thus x21; x1x2; x22 have degree 0 mod 2. Furthermore, one anshow the following:1. U� = V(xz � y2) � C 3 .2. G ats on C 2 by multipliation by �1.3. The ring of invariants is C [x1 ; x2℄G = C [x21 ; x1x2; x22℄.4. The quotient map � : C 2 ! U� is given by (x1; x2)! (x21; x1x2; x22).Note that C 2 ! U� is 2-to-1. This is a lassi example of a �nite quotient singu-larity. �In the nonsimpliial ase, things an be more ompliated.Example 11.3. Consider the one � of Example 4.2. By Example 5.2, weknow that U� = V(xy � zw) � C 4 . The edge generators (4.1) of � give variablesx1; x2; x3; x4. We leave it as an exerise for the reader to verify the following:1. G = C � ats on C 4 via � � (x1; x2; x3; x4) = (�x1; ��1x2; ��1x3; �x4).



WHAT IS A TORIC VARIETY? 152. In the homogeneous oordinate ring C [x1 ; x2; x3; x4℄, the variables havedegreesdeg(x1) = deg(x4) = 1; deg(x2) = deg(x3) = �1:3. The ring of invariants isC [x1 ; x2; x3; x4℄G = C [x1x2; x3x4; x1x3; x2x4℄:4. The quotient map � : C 4 ! C 4=G = U� is�(x1; x2; x3; x4) = (x1x2; x3x4; x1x3; x2x4):In this example, the quotient C 4=G is a ategorial quotient. To see how this andi�er from an ordinary quotient, let p 2 U� . Then one an show the following:� p 6= (0; 0; 0; 0) ) ��1(p) is a G-orbit.� p = (0; 0; 0; 0) ) ��1(p) = (C � f0g � f0g � C ) [ (f0g � C � C � f0g).The �rst bullet shows that most of the time, the ategorial quotient C 4=G behaveslike an ordinary quotient. However, things mess up over (0; 0; 0; 0) sine the seondbullet shows that the stu� mapping to (0; 0; 0; 0) has dimension 2 and hene onsistsof in�nitely many G-orbits. �In general, quotients are not easy to onstrut in algebrai geometry. Theabove example gives one way of onstruting a ategorial quotient via the ringof invariants (item 3 above) under the group ation. The idea is that the ring ofinvariants gives the oordinate ring of the quotient, and then one onstruts thevariety from its oordinate ring.12. The Tori Variety of a PolytopeA lattie polytope � in Rn is the onvex hull of a �nite subset of Zn. We willshow that an n-dimensional lattie polytope � determines a projetive tori varietyX� of dimension n.To do this, we �rst represent � as an intersetion of halfspaes. For eah faetF of �, there is an inward normal primitive vetor nF 2 Zn and integer aF suhthat(12.1) � = \F is a faetfm 2 Rn j hm;nF i � �aF g:Given any fae F of �, let �F be the one generated by nF for all faets F ontainingF . Then �� = f�F j F is a fae of �gis a fan whih is alled the normal fan of �. This gives a tori variety denoted X�.Example 12.1. The unit square 2 with verties (0; 0); (1; 0); (1; 1); (0; 1) anbe represented 2 = fa � 0g \ fa � 1g \ fb � 0g \ fb � 1g= fa � 0g \ f�a � �1g \ fb � 0g \ f�b � �1g:



16 DAVID COXIt follows that the inward normals are �e1 and �e2 in Z2. These an be pituredas follows (not drawn to sale):
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Eah inward normal appears twie to show that eah vertex gives a 2-dimensionalone in the normal fan. For example, the vertex (1; 1) gives the 2-dimensional one� ?The other verties are handled similarly, and the resulting normal fan is the oneappearing in Example 8.5. Hene X2 = P1 � P1. �In general, we an haraterize these fans as follows.Theorem 12.2. The normal tori variety of a fan � in Rn is projetive if andonly if � is the normal fan of an n-dimensional lattie polytope in Rn .This is proved as follows. Let m1; : : : ;m` be the lattie points of �, so that` = j� \Znj. In the next setion we will show that the map(12.2) '(t1; : : : ; tn) = �tm1(t1; : : : ; tn); : : : ; tm`(t1; : : : ; tn)� 2 P`�1from (C � )n to P`�1 extends to a map X� ! P`�1. Notie that this is a projetiveversion of (5.2). Then Theorem 12.2 is proved by showing that for � � 0, theorresponding map for �� is an embedding.An important onsequene of the previous paragraph is that it gives a om-pletely elementary way to de�ne the tori variety X�. Namely, given � and � > 0,the analog of (12.2) is the map'� : (C � )n �! P`��1de�ned by the lattie points of �� (so that `� = j�� \ Znj). Then, provided � issuÆiently large (we will explain how large in the next setion), one an de�ne X�to be the Zariski losure of the image of '� . Notie how this is analogous to thede�nition of the aÆne tori variety U� given in Setion 5.A useful observation is that the polytope � is ombinatorially dual to its normalfan ��. This means that there is a one-to-one inlusion reversing orrespondene�F 2 ��  ! F � �



WHAT IS A TORIC VARIETY? 17between ones of �� and faes of � (provided we ount � as a fae of itself) suhthat(12.3) dim �F + dim F = nfor all faes F of �. Combining this with the orrespondene between ones in ��and torus orbits in X� from Setion 9, we get a one-to-one dimension preservingorrespondene between faes of � and torus orbits of X�. Thus � determines theombinatoris of the tori variety X�.There is also a dual onstrution of X�. Suppose that P � Rn is an n-dimensional polytope whih ontains the origin as an interior point and whoseverties lie in Qn . Then we get a fan �P in Rn by taking ones (relative to theorigin) over the faes of P . The resulting tori variety is denoted XP .Example 12.3. Consider the tilted square P in the plane:
����������������

The fan �P obtained by taking ones over faes is the fan of Example 8.5. It followsimmediately that XP = P1 � P1. �To relate this to our earlier onstrution, we de�ne the polar or dual of P � Rnto be P Æ = fm 2 Rn j hm;ui � �1 for all u 2 Pg:Sine P has rational verties, so does P Æ, whih means that � = `P Æ is a lattiepolytope for some positive integer `. Then one an show that �P is the normal fanof �, so that XP is the projetive tori variety X�.13. Polytopes and Homogeneous CoordinatesAs in the previous setion, we �x a lattie polytope � � Rn . The homogeneousoordinates ofX� have a nie desription as follows. By (12.3), 1-dimensional onesof the normal fan orrespond to faets of �. It follows that variables orrespond tofaets. If we label the faets F1; : : : ; Fr and the inner normals n1; : : : ;nr, then weall x1; : : : ; xr the faet variables of the polytope �.Also, the exeptional set Z = V(x�̂ j � 2 ��; dim(�) = n) � C r has a niedesription. By (12.3), n-dimension ones in the normal fan orrespond to vertiesv 2 �. Thus we set xv̂ = x�̂ . We all this the vertex monomial of v sine it isthe produt of those variables whose faets miss the vertex v. It follows that Z isde�ned by the vanishing of the vertex monomials, so that C r nZ onsists of pointsin C r where at least one vertex monomial is nonvanishing.



18 DAVID COXFrom �, we get some interesting monomials in the homogeneous oordinatering C [x1 ; : : : ; xr℄. Write (12.1) as(13.1) � =\i fm 2 Rn j hm;nii � �aig:Then, given m 2 � \ Zn, set xm = rYi=1 xhm;nii+aii :We all xm a �-monomial. The desription (13.1) of � shows that the exponentsof xm are all � 0, so that xm is in the homogeneous oordinate ring.One nie observation is that the exponent of xi in xm gives the lattie distanefromm to the faet Fi. To see this, suppose that the exponent of xi is a > 0. ThenFi lies in the hyperplane fm 2 Rn j hm;nii + ai = 0g. To get from here to m, wemust pass through the a parallel hyperplanes, namely fm 2 Rn j hm;nii+ ai = jgfor j = 1; : : : ; a. Here is an example.Example 13.1. Consider the tori variety X� of the polytope � � R2
���x1 x5x2 x4x3with verties (1; 1); (�1; 1); (�1; 0); (0;�1); (1;�1). In terms of (13.1), we havea1 = � � � = a5 = 1, where the indies orrespond to the variables x1; : : : ; x5 shownin the above piture. The 8 points of � \ Z2 give the following �-monomials:x2x23x24; x1x22x23x4; x21x32x23x3x24x5; x1x2x3x4x5; x21x22x3x5x1x4x25; x21x2x25:In this display, the position of eah �-monomial xm orresponds to the position ofthe lattie point m 2 � \ Z2. �One nie property is all �-monomials have the same degree. To see this, let� = (�1; : : : ; �r) 2 G and set �� =Yi �aii :Then, given m 2 � \ Zn, we have(13.2) � � xm = rYi=1(�ixi)hm;nii+ai = ��xmsineQri=1 �hm;niii = 1 by the de�nition of G given in Setion 10. It follows that all�-monomials transform the same way under G, whih means that they have the



WHAT IS A TORIC VARIETY? 19same degree. Furthermore, one an show the �-monomials give all monomials ofthis degree.Here are three further observations:� The lattie points in the interior int(�) of � orrespond preisely to those�-monomials whih are divisible by x1 � � �xr.� If � is a positive integer, then � and �� have the same normal fan andtori variety. Thus X� = X��.� In partiular, X� and X�� have the same oordinate ring C [x1 ; : : : ; xr℄.Furthermore, in a sense that an be made preise, the ��-monomials arethe monomials whose degree is � times the degree of the �-monomials.Lattie points in int(�) and �� play an important role in the Ehrhart polynomialof the polytope �.We an also use �-monomials to give a homogeneous version of the map (12.2)whih uses the quotient representation X� = (C r n Z)=G. As in the previoussetion, let mi; i = 1; : : : ; ` be the lattie points of � \Zn. Then onsider the map(13.3) x = (x1; : : : ; xr) �! (xm1 ; : : : ;xm`):First observe that if v = mj is a vertex of �, then xmj and the vertex monomialxv̂ de�ned in Setion 12 involve exatly the same variables. This is beause v haszero lattie distane to all faets it lies in and positive lattie distane to all theothers. It follows that sine Z is de�ned by the vanishing of the vertex monomials,the map (13.3) gives a well de�ned map� : C r n Z �! P`�1:Furthermore, given x 2 C r n Z and � 2 G, (13.2) implies that�(� � x) = ��p(x):Sine we are mapping to projetive spae, � indues a well-de�ned map(13.4) X� = �C r nV(B)�=G �! P`�1:The surprise is that if one restrits this map to (C � )n � X�, then the result isexatly the map (12.2)'(t1; : : : ; tn) = �tm1(t1; : : : ; tn); : : : ; tm`(t1; : : : ; tn)� 2 P`�1de�ned by the Laurent monomials of lattie points of �\Zn. To prove this, observethat by (10.5), the variables t1; : : : ; tn on the torus (C � )n are related to the variablesx1; : : : ; xr on C r via tj = rYi=1xhej ;niii :Now let m = (m1; : : : ;mn) =Pnj=1mjej 2 Zn. Then one omputes thatxa11 � � �xarr tm = rYi=1xaii nYj=1 tmjj = rYi=1 xaii nYj=1 � rYi=1xhej ;niii �mj= rYi=1xhm;nii+aii = xm:When restrited to a point in (C � )n, it follows that as we vary m 2 � \ Zn, themonomials tm and xm di�er by a multipliative fator whih doesn't depend on



20 DAVID COXm. Hene ' and (13.4) give the same map on (C � )n. In partiular, this proves thelaim made in the previous setion that ' extends to all of X�.Finally, we note that while (13.4) is not an embedding in general, it is knownto be an embedding in the following two ases:� X� is smooth, or� We replae � with (n� 1)�, n = dim(�).In partiular, when � is a polygon, we have (n�1)� = (2�1)� = �. Thus (13.4)is always an embedding when X� is a tori surfae. This is the ase of greatestinterest in geometri modeling.In our �nal example, we note that the map � has appeared in the geometrimodeling literature.Example 13.2. In the paper [22℄ by Rimas Krasauskas, the map (13.3) appearsas equation (18) in De�nition 14. Krasauskas denotes the homogeneous oordinatesby u1; : : : ; ur and the points of �\Zn by m0; : : : ;mN . He writes the �-monomialsas uh(mi) instead of xmi . �14. BibliographyBasi Referenes on Tori Varieties1. J.-L. Brylinski, Eventails et vari�et�es toriques, in S�eminaire de les Singularit�es deSurfaes (ed. by M. Demazure, H. Pinkham and B. Tessier), Leture Notes in Math.777, Springer-Verlag, New York-Berlin-Heidelberg, 1980, 247{288.2. V. Danilov, The geometry of tori varieties, Russian Math. Surveys 33 (1978), 97{154.3. G. Ewald, Combinatorial Convexity and Algebrai Geometry, Springer-Verlag, NewYork-Berlin-Heidelberg, 1996.4. W. Fulton, Introdution to Tori Varieties, Prineton University Press, Prineton, NJ,1993.5. T. Oda, Convex Bodies and Algebrai Geometry: An Introdution to Tori Varieties,Springer-Verlag, New York-Berlin-Heidelberg, 1988.Basi Referenes on Algebrai Geometry6. D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms, Seond Edition,Springer-Verlag, New York-Berlin-Heidelberg, 1997.7. D. Cox, J. Little and D. O'Shea, Using Algebrai Geometry, Springer-Verlag, NewYork-Berlin-Heidelberg, 1998.8. D. Eisenbud and J. Harris, The Geometry of Shemes, Springer-Verlag, New York-Berlin-Heidelberg, 2000.9. J. Harris, Algebrai Geometry: A First Course, Springer-Verlag, New York-Berlin-Heidelberg, 1992.10. R. Hartshorne, Algebrai Geometry, Springer-Verlag, New York-Berlin-Heidelberg,1977.11. M. Reid, Undergraduate Algebrai Geometry, Cambridge University Press, Cam-bridge, 1988.12. I. R. Shafarevih, Basi Algebrai Geometry, Seond Revised and Expanded Edition,Volumes 1 and 2, Springer-Verlag, New York-Berlin-Heidelberg, 1994.13. K. E. Smith, L. Kahanp�a�a, P. Kek�al�ainen and W. Traves, An Invitation to AlgebraiGeometry, Springer-Verlag, New York-Berlin-Heidelberg, 2000.
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