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Lecture I: Toric Varieties and Their Constructions

1 Varieties

We will work over the complex numbersC . Basic examples of varieties are:� Affine spaceC n andaffine varieties

V = V( f1; : : : ; fs)� C n

defined by the polynomial equationsf1 = � � �= fs = 0.� Projective spacePn andprojective varieties

V = V(F1; : : : ;Fs)� Pn

defined by the homogeneous equationsF1 = � � �= Fs = 0.

Example 1.1 Let C � = C nf0g. Then(C �)n� C n is an affine variety since the map(t1; : : : ; tn) 7!(t1; : : : ; tn;1=t1 � � �tn) gives a bijection(C �)n' V(x1x2 � � �xn+1�1)� C n+1:
We callC � then-dimensional complex torus.

Also recall that given varietiesV andW, we can form theproduct variety V�W. Then a
morphismϕ : V!W is a function whose graph is a subvariety ofV�W.

2 Characters and 1-Parameter Subgroups

The torusT = (C �)n has:� Thecharacter group

M = fχ : T! C � j χ is a morphism and a group homomorphismg:� The group of 1-parameter subgroups

N = fλ : C � ! T j λ is a morphism and a group homomorphismg:
Note that:� M ' Zn wherem= (m1; : : : ;mn) 2 Zn gives

χm(t1; : : : ; tn) = tm1
1
� � �tmn

n :� N' Zn whereu= (u1; : : : ;un) 2 Zn gives

λ u(t) = (tu1; : : : ; tun):
1



Givenχ 2M andλ 2N, the compositionχ Æλ : C �! C � is of the formt 7! tk for somek2Z.
If we setk= hχ;λ i, then

χ Æλ (t) = thχ;λ i:
One can easily check that:� The mapM�N! Z given by(χ;λ ) 7! hχ;λ i is a perfect pairing.� Givenm= (m1; : : : ;mn) andu= (u1; : : : ;un), thenhχm;λ ui= m1u1+ � � �+mnun:
Furthermore:� We will usually identifyM with Zn and writem2 M. However, when we think ofm as a

function onT = (C �)n, we continue to writeχm.� Similarly, we identityN with Zn and writeu2 N, though we writeλ u when thinking ofu as a
1-parameter subgroup.� Finally, we will usually writehm;ui instead ofhχm;λ ui.

3 Toric Varieties

The torusT = (C �)n can be regarded as a Zariski open subset of a larger varietyX in many ways:� (C �)n� C n under the natural inclusion.� (C �)n� Pn under the map(t1; : : : ; tn) 7! (t1; : : : ; tn;1).� V = V(xy�zw)� C 4 contains the Zariski open setV \ (C �)4. The map(r;s; t) 7! (r;s; t; rs=t)
induces a bijection(C �)3'V \ (C �)4. ThusV contains a copy of(C �)3 as a Zariski open set.

Definition 3.1 A toric variety is a normal variety X of dimension n which contains a torus T=(C �)n as a Zariski open set in such a way that the natural action of T on itself given by the group
structure extends to an action of T on X.

All of the above examples are toric varieties. The main goal of Lecture I is to explain three
constructions of toric varieties. The common thread of these constructions is the rich combinatorial
structure which underlies a toric variety. Here is an example,

Example 3.2 Let’s show that(C �)2� P2 gives the following picture inR2 = N
ZR:

(1.1) ������
2



A 1-parameter subgroupu2 N gives a mapλ u : C � ! P2. P2 is complete, so that

lim
t!0

λ u(t)
exists inP2. If u= (a;b) 2 Z2 = N, then the description ofλ u given on page 1 implies that

λ u(t) = (ta; tb;1):
It is then straightforward to compute that

(1.2) lim
t!0

λ u(t) = lim
t!0

(ta; tb;1) =
8>>>>>>>>>>><>>>>>>>>>>>:
(0;0;1) a;b> 0(0;1;1) a> 0;b= 0(1;0;1) a= 0;b> 0(1;1;1) a= b= 0(0;1;0) a> b;b< 0(1;0;0) a< 0;a< b(1;1;0) a< 0;a= b:

The first four cases are trivial. To see how the fifth case works, note that

lim
t!0

(ta; tb;1) = lim
t!0

(ta�b;1; t�b)
since these are homogeneous coordinates. Thena> b andb< 0 imply that the limit is(0;1;0), as
claimed. The last two cases are similar.

Now observe that (1.1) decomposes the plan into 7 disjoint regions:� The open sets 1:a;b> 0, 2:a= 0;b> 0, 3:a> b;b< 0.� The open rays 1:a> 0;b= 0, 2:a= 0;b> 0, 3:a< 0;a= b.� The pointa= b= 0.

The corresponds perfectly with (1.2). In the next section, we will see that (1.1) is thefan corre-
sponding to the toric varietyP2.

4 First Construction: Cones and Fans

Let X be a toric variety withT = (C �)n, M andN as above. We first explain how the character
groupM leads to pictures generalizing (1.1). The idea is thatm2 M givesχm : T ! C � . Since
T � X, we can regardχm as a rational function onX.

The divisor of this rational function has some nice properties. It is supported on the complement
of T in X. This complement will be a union of irreducible divisors, which we denote

X nT = D1[�� �[Dr :
Then the divisor ofχm can be written

div(χm) = r

∑
i=1

aiDi;
3



whereai is the order of vanishing (or the negative of the order of the pole) of χm alongDi . This is
one of the reasons we require thatX be normal—it ensures that theai are well-defined.

The key observation is that the mapm 7! ai is a homormorphism. (Exercise:Prove this.) Using
the duality betweenM andN, we getni 2 N such thatai = hm;nii. This implies

(1.3) div(χm) = r

∑
i=1
hm;niiDi:

It follows that the toric structure ofX uniquely determines a unique set of elementsn1; : : : ;nr 2 N.
Theni are part of thefan determined byX.

However, before we can define fans, we must considercones. We will let MR = M
ZR and
NR = N
ZR denote the real vector spaces obtained fromM andN.

A rational polyhedral coneσ � NR is a cone generated by finitely many elements ofN:

σ = �
λ1u1+ � � �+λsus2 NR j λ1; : : : ;λs� 0

	;
whereu1; : : : ;us2 N. Then:� σ is strongly convexif σ \ (�σ) = f0g.� Thedimensionof σ is the dimension of the smallest subspace containingσ .� A faceof σ is the intersectionf` = 0g\σ , where` is a linear form which is nonnegative on

σ . The set of faces ofσ of dimensionr is denotedσ(r).� Theedgesof σ are the 1-dimensional facesρ 2 σ(1). Theprimitive element nρ of ρ 2 σ(1) is
the unique generator ofρ \N. The primitive elementsnρ ; ρ 2 σ(1), generate theσ .� The facetsof σ are the codimension-1 faces. When dimσ = n, each facet has an inward
pointing normal which is naturally an element ofMR. We get a unique inward normal by
requiring that it is inM and has minimal length.

If σ � NR be a strongly convex rational polyhedral cone, then itsdual coneσ_ �MR is

σ_ = �
m2MR j hm;ui � 0 for all u2 σ

	:
This is a rational polyhedral cone of dimensionn. Then consider the semigroup algebraC [σ_ \M℄
consisting of linear combinations of charactersχm, with multiplication given byχm�χm0 = χm+m0

.
Gordan’s Lemmaimplies thatC [σ_ \M℄ is a finitely generated algebra overC .

Example 4.1 First consider ann-dimensional coneσ generated by a basise1; : : : ;en of N. The
basis gives an isomorphismN ' Zn which takesσ to the “first quadrant” where all coordinates
are nonnegative. In terms of the dual basise�i of M, σ_ has the same description. It follows thatC [σ_ \M℄ can be identified with the usual polynomial ringC [t1; : : : ; tn℄ by settingti = χe�i .
Example 4.2 Next suppose thatσ = f0g is the trivial cone. Thenσ_ = MR, so thatσ_ \M =
M. Picking bases forN andM as in the previous example, the semigroup algebraC [M℄ can be
identified with the ring of Laurent polynomialsC [t�1

1 ; : : : ; t�1
n ℄.

4



Example 4.3 Consider the coneσ � R3 pictured below:

c

b

a

The inward pointing normals of the facets ofσ are

(1.4) m1 = (1;0;0); m2 = (0;1;0); m3 = (0;0;1); m4 = (1;1;�1):
These generate the dual coneσ_ and in this case also generate the semigroupσ_\M. Under the
ring homomorphismC [x;y;z;w℄! C [σ_ \M℄ defined by

x 7! χm1; y 7! χm2; z 7! χm3; w 7! χm4;
one sees thatxy�zw 7! 0 sincem1+m2 = m3+m4. It follows easily thatC [x;y;z;w℄=hxy�zwi ' C [σ_ \M℄:

In general, one can writeC [σ_ \M℄ ' C [x1; : : : ;xN℄=h f1; : : : ; fsi, generalizing Example 4.3.
Then the affine variety

Xσ = V( f1; : : : ; fs)� C N

is theaffine toric varietydetermined by the strictly convex rational polyhedral coneσ . The con-
struction ofXσ is a special case of the “Spec” of a ring, as described in Hartshorne. Thus

Xσ = Spec(C [σ_ \M℄):
Also, C [σ_ \M℄ is thecoordinate ringof Xσ , which consists of all polynomial functions onXσ .
Note that the inclusionC [σ_ \M℄� C [M℄ corresponds to an inclusionT � Xσ . ThusC [σ_ \M℄
tells us which characters on the torusT are allowed to extend to functions defined on all ofXσ .

You should check that the above examples give the following affine toric varieties:� Example 4.1 givesC n = Spec(C [t1; : : : ; tn℄).� Example 4.2 gives(C �)n = Spec(C [t�1
1 ; : : : ; t�1

n ℄).� Example 4.3 givesV = V(xy�zw) = Spec(C [x;y;z;w℄=hxy�zwi).
5



We next create more general toric varieties by gluing together affine toric varieties containing
the same torusT. This brings us to the concept of afan, which is defined to be a finite collectionΣ
of cones inNR with the following three properties:� Eachσ 2 Σ is a strongly convex rational polyhedral cone.� If σ 2 Σ andτ is a face ofσ , thenτ 2 Σ.� If σ ;τ 2 Σ, thenσ \ τ is a face of each.

Eachσ 2 Σ gives an affine toric varietyXσ , and if τ is a face ofσ , thenXτ can be regarded as a
Zariski open subset ofXσ . This leads to the following definiton.

Definition 4.4 Given a fanΣ in NR, XΣ is the variety obtained from the affine varieties Xσ , σ 2 Σ,
by gluing together Xσ and Xτ along their common open subset Xσ\τ for all σ ;τ 2 Σ.

The inclusionsT � Xσ are compatible with the identifications made in creatingXΣ, so thatXΣ
contains the torusT as a Zariski open set. Furthermore, one can show thatXΣ is a toric variety and
that all toric varieties arise in this way, i.e., every toric varietyis determined by a fan. Here are
some examples.

Example 4.5 Givenσ � NR, we get a fan by taking all faces ofσ (includingσ ). The toric variety
of this fan is the affine toric varietyXσ . For the special case whenσ is generated by the firstk
vectors of a basise1; : : : ;en of N, you should check that

Xσ = C k� (C �)n�k:
Example 4.6 The fan forP1 is as follows: t
The conesσ1 = [0;∞) andσ2 = (�∞;0℄ give X1 = Spec(C [t℄) ' C andX2 = Spec(C [t�1℄) ' C ,
which patch in the usual way to giveP1.

Example 4.7 The fan forP1�P1 is as follows:

6



In this figure, 1-dimensional cones are indicated with thicklines, and 2-dimensional cones (which
extend to infinity) are shaded. Thus the fan forP1�P1 has four 2-dimensional conesσ1; : : : ;σ4.
The affine toric varietiesXσi

' C 2 glue together in the usual way to giveP1�P1.

Example 4.8 Let e1; : : : ;en be a basis ofN = Zn, and sete0 = �e1��� ��en. Then we get a fan
by taking the cones generated by all proper subsets offe0;e1; : : : ;eng. You should check that the
associated toric variety isPn. Whenn= 2, this gives the fan (1.1).

There aremanyother nice examples of toric varieties, including productsof projective spaces,
weighted projective spaces, and Hirzebruch surfaces. We will see in the Lecture II that every lattice
polytope inMR determines a projective toric variety.

Toric varieties are sometimes calledtorus embeddings, and Fulton and Oda call the fan∆. Also,
the toric variety determined byΣ is variously denotedXΣ, X(Σ), Z(Σ), andTNemb(Σ). Further-
more, polytopes (which we will encounter in Lecture II) are denotedP, 2, and (just to confuse
matters more)∆. The lack of uniform notation is unfortunate, so that the reader of a paper using
toric methods needs to look carefully at the notation.

5 Properties of Toric Varieties

The fanΣ has a close relation to the structure of toric varietyXΣ. The basic idea is that there are
one-to-one correspondences between the following sets of objects:� The limits limt!0λ u(t) for u2 jΣj=Sσ2Σ σ (jΣj is thesupportof Σ).� The conesσ 2 Σ.� The orbitsO of the torus actionT on XΣ.

The correspondences is as follows: an orbitO corresponds to a coneσ if and only if limt!0λ u(t)
exists and lies inO for all u in the relative interior ofσ . SettingO= orb(σ), we have� dimσ +dimorb(σ) = n.� orb(σ)� orb(τ) if and only if τ � σ .

In particular, the fixed points of the torus action correspond to then-dimensional cones in the fan.
(Exercise:Verify all of this for P2 and the fan drawn in Example 3.2.)

We next discuss some basic properties of toric varieties. First, some terminology:� A cone issmoothif it is generated by a subset of a basis ofN.� A cone issimplicial if it is generated by a subset of a basis ofNR.

Then we have the following result.

Theorem 5.1 Let XΣ be the toric variety determined by a fanΣ in NR. Then:

(a) XΣ is complete() the supportjΣj=Sσ2Σ σ is all of NR.

(b) XΣ is smooth() everyσ 2 Σ is smooth.

(c) XΣ is an orbifold() everyΣ is simplicial.(Such toric varieties are calledsimplicial.)
(d) XΣ is Cohen-Macaulay with dualizing sheafωXΣ

= OXΣ
(�∑ρ Dρ).

(e) XΣ has at worst rational singularities.

Lecture II will give criteria forXΣ to be projective.
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6 Second Construction: Homogeneous Coordinates

Our second construction uses homogeneous coordinates for toric varieties. Homogeneous co-
ordinates onPn give not only the graded ringC [x0; : : : ;xn℄ but also the quotient constructionPn ' (C n+1 n f0g)=C � . Given an arbitrary toric varietyXΣ, we generalize this as follows. For
eachρ 2 Σ(1), introduce a variablexρ , which gives the polynomial ring

S= C �xρ j ρ 2 Σ(1)�:
To gradeS, we first note that for eachρ 2 Σ(1), the corresponding orbit has codimension 1, which
means that its closure is an irreducible divisorDρ � XΣ. It follows that a monomialΠρxaρ

ρ gives

an effective divisorD = ∑ρ aρDρ . For this reason, we write the monomial asxD. Now define the
groupAn�1(XΣ) by the exact sequence

(1.5) M
α�!LρZDρ

β�! An�1(XΣ)�! 0;
whereα(m) = ∑ρhm;nρiDρ andβ is the quotient map. Then the degree of a monomialxD is
defined to be deg(xD) = β (D). This graded ring is thehomogeneous coordinate ringof XΣ.

One can prove thatAn�1(XΣ) is theChow groupof Weil divisors modulo algebraic equivalence.
To see how this relates to (1.5), note that (1.6) implies that

(1.6) div(χm) = ∑
ρ
hm;nρiDρ :

is linearly equivalent to zero. This explains the mapα in (1.5). We should also mention that when
XΣ is smooth,An�1(XΣ) is thePicard groupPic(XΣ).
Example 6.1 ForPn, this construction givesS= C [x0; : : : ;xn℄ with the usual grading,

Example 6.2 ForP1�P1, Example 4.7 shows that we have divisorsD1;D2 corresponding to the
horizontal rays and divisorsD3;D4 corresponding to vertical ones. If the corresponding variables
arex1;x2;x3;x4, then we get the ringS= C [x1;x2;x3;x4℄. One can show that the Chow group isZ2

and that
deg(xa1

1
xa2

2
xa3

3
xa4

4
) = (a1+a2;a3+a4);

which is precisely the usual bigrading onC [x1;x2;x3;x4℄, where each graded piece consists of
bihomogeneous polynomials inx1;x2 andx3;x4.

Example 6.2 generalies toPn�Pm, whereS= C [x0; : : : ;xn;y0; : : : ;ym℄ with the usual bigrading.
We next use the variablesxρ to give coordinates onXΣ. To do this, we need an analog of the

“irrelevant” idealhx0; : : : ;xni � C [x0; : : : ;xn℄. For each coneσ 2 Σ, let xσ̂ be the monomial

xσ̂ = ∏ρ2Σ(1)nσ(1)xρ ;
and then define the idealB� S to be

B= 

xσ̂ j σ 2 Σ

�:
ForPn, the reader should check thatB= hx0; : : : ;xni.

8



The basic idea is thatXΣ should be a quotient ofC Σ(1) nV(B), whereV(B)� C Σ(1) is the variety
of B. The quotient is by the groupG, where

G= HomZ(An�1(XΣ);C �):
Note that applying HomZ(�;C �) to (1.5) gives the exact sequence

(1.7) 1�!G�! (C �)Σ(1) �! T:
This shows thatG acts naturally onC Σ(1) and leavesV(B) invariant.

The following representation ofXΣ was discovered by several people in the early 1990s.

Theorem 6.3 Assume that XΣ is a toric variety such thatΣ(1) spans NR. Then:

(a) XΣ is the universal categorical quotient
�C Σ(1) nV(B)�=G.

(b) XΣ is a geometric quotient
�C Σ(1) nV(B)�=G if and only if XΣ is simplicial.

In the situation of the theorem, (1.7) is a short exact sequence, so thatT = (C �)Σ(1)=G. Thus

T = (C �)Σ(1)=G� �C Σ(1) nV(B)�=G:
Furthermore, since the “big” torus(C �)Σ(1) acts naturally onC Σ(1) nV(B), it follows thatT acts on
XΣ. Quotients preserve normality, so that all of the requirements of being a toric variety are satisfied
by the quotient in Theorem 6.3. In fact, one candefine XΣ to be the quotient

�C Σ(1) nV(B)�=G.
Here are some examples of Theorem 6.3.

Example 6.4 ForPn, the theorem gives the usual quotient representationPn ' (C n+1 nf0g)=C � .

Example 6.5 Continuing our example ofP1� P1, we haveB = hx1x3;x1x4;x2x3;x2x4i. Then,
thinking ofC Σ(1) asC 2� C 2, one has

V(B) = (f0g� C 2)[ (C 2�f0g):
One can also check thatG' (C �)2 acts onC 2� C 2 via(λ ;µ) � (x1;x2;x3;x4) = (λx1;λx2;µx3;µx4):
Hence the quotient of Theorem 6.3 becomes�C 2� C 2 n �(f0g� C 2)[ (C 2�f0g)��=(C �)2;
which is exactly the way one usually representsP1�P1 as a quotient.

Example 6.6 We will construct global coordinates for the blow-up of 02 C n. Let e1; : : : ;en be a
basis ofN =Zn, and letσ = Rn+ be the cone they generate. The resulting affine toric varietyis C n.
Then sete0 = e1+ � � �+en and consider the fanΣ whose cones are generated by all proper subsets
of fe0; : : : ;eng, excludingfe1; : : : ;eng. We will prove thatXΣ is the blow-up of 02 C n using the
representation ofXΣ given by Theorem 6.3.

9



If xi corresponds to the edge generated byei , then the reader should show that the homogeneous
coordinate ring ofXΣ is C [x0; : : : ;xn℄ where deg(x0) =�1 and deg(xi) =+1 for 1� i � n. Further-
more,V(B) = C �f0g � C �C n andG= C � acts onC Σ(1) = C �C n by µ � (x0;x) = (µ�1x0;µx).
Then, given(x0;x) 2 C � C n nV(B), we can act on this point usingG to obtain(x0;x)�G (1;x0x) if x0 6= 0(0;x)�G (0;µx) if µ 6= 0:
In the first line, note thatx 6= 0, so that this part of the quotient isC n nf0g. In the second line, we
clearly getPn�1. Note also that the mapXΣ ! C n given by(x0;x1; : : : ;xn) 7! (x0x1; : : : ;x0xn) is
well-defined sincex0xi has degree 0 and hence is invariant under the group action. Itfollows that
XΣ is the blow-up of 02 C n.

If σ is ann-dimensional cone inNR, then the representation ofXσ given by Theorem 6.3 is
especially simple in two cases:� For σ smooth, the theorem givesC n ' Xσ .� For σ simplicial, the theorem givesC n=G' Xσ , whereG is the finite groupN=(�ρZnρ).
However, in the nonsimplicial case, things can be more complicated.

Example 6.7 For the coneσ of Example 4.3, Theorem 6.3 givesC 4==G'Xσ = V(xy�zw), where
G= C � acts onC 4 via

λ � (x1;x2;x3;x4) = (λx1;λx2;λ�1x3;λ�1x4):
The quotient is writtenC 4==G because it is not a quotient in the usual group theoretic sense. To
see why, consider the mapC 4! Xσ given by(x1;x2;x3;x4) 7! (x1x3;x2x4;x1x4;x2x3):
If p2 Xσ , then one can show that� p 6= 0) π�1(p) is aG-orbit.� p= 0) π�1(p) = (C 2�f0g)[ (f0g� C 2).
7 Third Construction: Toric Ideals

Our third construction involves toric ideals. Let’s begin with a special case. Letσ �NR be a cone,
and suppose thatA = fm1; : : : ;msg generates the semigroupσ_\M. The map sendingyi 7! χmi

gives a surjective homomorphismC [y1; : : : ;ys℄! C [σ_ \M℄. The kernelIA is atoric ideal.
A key observation is thatIA is generated bybinomials (a binomial is a difference to two

monomials). To state this precisely, note thatα = (a1; : : : ;as) 2 Zs can be uniquely writtenα =
α+�α�, whereα+ andα� have nonnegative entries and disjoint support. Then the toric ideal
IA � C [y1; : : : ;ys℄ is

(1.8) IA = 

yα+�yα� j α = (a1; : : : ;as) 2 Zs; ∑s

i=1aimi = 0
�:

10



In practice, toric ideals are defined in much greater generality and are closely related to non-
normal toric varieties. To set this up, letA = fm1; : : : ;msg beanyfinite subset ofZn. Then define
the toric ideal IA using the right-hand side of (1.8). Toric ideals are easy to characterize: an ideal
in C [y1; : : : ;ys℄ is a toric idealIA if and only if it is prime and is generated by binomials.

Thinking geometrically,IA defines a subvarietyXA � C s. One can show thatXA is the Zariski
closure of the image of the map(C �)n! C s defined by

(1.9) t 7! (χm1(t); : : :;χms(t)):
Note also thatXA contains a torus (the image of(C �)n under the map (1.9)). HenceXA satisfies
all of the criteria for being a toric variety, except possibly normality. For this reason, we callXA a
generalized affine toric variety. Here are two facts aboutXA :� XA is a toric variety in the usual sense (i.e., is normal) if and only if NA = Cone(A )\ZA ,

where Cone(A ) is the cone generated byA , andZA (resp.NA ) is the set of all integer
(resp. nonnegative integer) combinations of elements ofA .� The normalization ofXA is the affine toric varietyXσ , whereσ � NR is the cone dual to
Cone(A ) andN is the dual ofZA .

Example 7.1 The toric variety of Example 4.3 isXA , whereA = fm1;m2;m3;m4g as in (1.4).

Example 7.2 GivenA = fβ1; : : : ;βsg � Z, we get amonomial curvein C s parametrized by

t 7! (tβ1; : : : ; tβs):
Sincetβi is a character onC � , this is the generalized affine toric varietyXA . It is nonnormal
precisely whenXA fails to be smooth. The simplest example is the cusp parametrized by t 7!(t2; t3). Here, the corresponding toric ideal is generated by the binomialy2�x3.

Besides the generalized affine toric varietyXA � C s, we also get a projective varietyYA �Ps�1

by regarding (1.9) as a mapT! Ps�1. More precisely, thegeneralized projective toric variety YA
is defined to be the Zariski closure of the image of this map. Generalized projective toric varieties
arise naturally in many different contexts.

Example 7.3 Suppose thatA = fm1; : : : ;msg � Zn and thatA generatesZn. Then letL(A ) be
the set of Laurent polynomials with exponent vectors inA , i.e.,

L(A ) = �
a1tm1 + � � �+astms j ai 2 C 	;

wheretm= ta1
1
� � �tan

n for m= (a1; : : : ;an)2Zn. Givenn+1 Laurent polynomialsf0; : : : ; fn2 L(A ),
theirA -resultant

ResA ( f0; : : : ; fn)
is a polynomial in the coefficients of thefi whose vanishing is necessary and sufficient for the
equationsf0 = � � �= fn = 0 to have a solution. However, one must be careful where the solution
lies. Thefi are defined initially on the torus(C �)n, but the definition of generalized projective toric
variety shows that the equationfi = 0 makes sense onYA . Then one can prove that

ResA ( f0; : : : ; fn) = 0 () f1 = � � �= fn = 0 have a solution inYA :
Generalized toric varieties and toric ideals also have applications to hypergeometric equations

and combinatorics.
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Lecture II: Toric Varieties and Polytopes

1 The Toric Variety of a Polytope

Let M ' Zn andN ' Zn be as in Lecture I. Alattice polytope∆ in MR = M
ZR is the convex
hull of a finite subset ofM. We will show that ann-dimensional lattice polytope∆ determines a
projective toric varietyX∆.

To do this, we first describe∆. For each facetF of ∆, there is an inward normal primitive vector
nF 2 N and integeraF such that

(2.1) ∆ = fm2MR j hm;nFi � �aF for all facetsFg:
Given any faceF of ∆, let σF be the cone generated bynF for all facetsF containingF . Then

Σ∆ = fσF jF is a face of∆g
is a complete fan which is called thenormal fanof ∆. This gives a toric variety denotedX∆.

Example 1.1 The unit square2 with vertices(0;0);(1;0);(1;1);(0;1) can be represented2= fa� 0g\f�a��1g\fb� 0g\f�b��1g:
It follows that the inward normals are�e1 and�e2. This gives the following normal fan:� �e1 and�e2 generate the 1-dimensional cones of the normal fan.� The vertex(0;1) lies in the faces defined bya= 0 and�b=�1 corresponding to inner normals

e1 and�e2. Hence this face corresponds to the cone generated bye1 and�e2.

The other vertices are handled similarly, and the resultingnormal fan is the one appearing in
Example 4.7. HenceX2 = P1�P1.

In general, we can characterize these fans as follows.

Theorem 1.2 The toric variety of a fanΣ in NR ' Rn is projective if and only ifΣ is the normal
fan of an n-dimensional lattice polytope in MR.

We should also note that the polytope∆ is combinatorially dual to it normal fanΣ∆. This means
that there is a one-to-one inclusion reversing correspondence

σF 2 Σ∆ !F � ∆

between cones ofΣ∆ and faces of∆ (provided we count∆ as a face of itself) such that

dimσF +dimF = n

for all facesF of ∆. Combining this with the correspondence between cones ofΣ∆ and torus orbits
from Lecture I gives a one-to-one dimension preserving correspondence between faces of∆ and
torus orbits ofX∆. Thus∆ determines the combinatorics of the toric varietyX∆.

12



In particular, a facetF of ∆ corresponds to the edgeσF Σ∆ generated bynF . This in turn
corresonds to a divisorDF on X∆. Then the representation (2.1) gives the divisor

D∆ = ∑
F

aFDF :
Then one can show that

(2.2) H0(X∆;OX∆
(D∆)) = M

m2∆\M

C �χm:
If we write ∆\M = fm1; : : : ;msg, then the sectionsχmi give the map (1.9) defined by

t 7! (χm1(t); : : :;χms(t));
which extends to a mapX∆ ,! Ps�1. In fact, for ν � 0, the corresponding map forν∆ is an
embedding (this is how one proves Theorem 1.2), so that in notation of Lecture I,Xν∆ is the
projective varietyYA , whereA = ν∆\M be the set of lattice points inν∆. Also, Xν∆ = X∆ since
∆ andν∆ have the same normal fan.

There is also a dual version of this construction. Suppose that P� NR is ann-dimensional
polytope which contains the origin as an interior point and whose vertices lie inQn. Then we get
a complete fanΣP in NR by taking cones (relative to the origin) over the faces ofP. The resulting
toric variety is denotedXP.

Example 1.3 Consider the tilted squareP in the plane:

����������������
The fanΣP obtained by taking cones over faces is the fan of Example 4.7.HenceXP = P1�P1.

To see how this relates to our earlier construction, we definethepolar or dualof P� NR to be

PÆ = fm2MR j hm;ui � �1 for all u2 Pg:
SinceP has rational vertices, so doesPÆ, which means that∆ = `PÆ is a lattice polytope for some
positive integer̀ . Then one can show thatΣP is the normal fan of∆, so thatXP is the projective
toric varietyX∆.

A quite different method for constructingX∆ is due to Batyrev. Given∆, consider the cone
over ∆�f1g � MR � R. The integer points of the cone give a semigroup algebraS∆. Since(m;k)2M�Z is in the cone if and only ifm2 k∆, S∆ is the subring ofC [t0; t�1

1 ; : : : ; t�1
n ℄ spanned by

Laurent monomialstk
0tm with k� 0 andm2 k∆. This ring can be graded by setting deg(tk

0tm) = k,
and one can show that

X∆ = Proj(S∆):
SinceS∆ is the coordinate ring of an affine toric variety, it is Cohen-Macaulay and henceX∆ is
arithmetically Cohen-Macaulay.

13



2 The Dehn-Sommerville Equations

Euler’s formula for a 3-dimensional polytope∆ in R3 is

(2.3) f0� f1+ f2 = 2;
where fi is the number ofi-dimensional faces of∆. If ∆ has the additional property that all of its
facets are triangles (such as a tetrahedron, octahedron or icosahedron), then counting edges gives

(2.4) 3f2 = 2 f1:
To generalize these, suppose thatP is ann-dimensional polytope inRn such that every facet

is simplicial, meaning that every facet has exactlyn vertices. For such a polytope, letfi be the
number ofi-dimensional faces ofP, and let f�1 = 1. Then, for 0� p� n, set

hp = n

∑
i=p

(�1)i�p
�

i
p

�
fn�i�1:

The Dehn-Sommervilleequations assert that ifP� Rn is ann-dimensional simplicial polytope,
then

(2.5) hp = hn�p for all 0� p� n:
Whenn= 3, (2.3) ish0 = h3 and (2.4) is equivalent toh1 = h2 (assumingh0 = h3).

To prove (2.5), note that we can moveP so that the origin is an interior point. Furthermore,
wiggling the vertices by a small amount does note change the combinatorial type ofP. Thus we
may assume that its vertices lie inQn. Then, as in the previous section, projecting from origin to
the faces ofP gives a fan inNR = Rn which is simplicial sinceP is. This gives a projective toric
varietyXP.

Being projective and simplicial implies two nice facts about XP:� hp = dim H2p(XP;Q ) for 0� p� n.� Poincaré Duality holds forXP, i.e., dimHq(XP;Q) = dim H2n�q(XP;Q) for 0� q� 2n.

The Dehn-Sommerville equations (2.5) follow immediately!
In the smooth case, the second bullet is Poincaré Duality. For the first bullet, note thatXP is a

union of affine toric varietiesXσ ' C n. Then the formula for dimH2p(XP;Q) follows straightfor-
wardly since

Xσ ' C k� (C �)n�k

whenσ is a smooth cone of dimensionk. The simplicial case is similar since an orbifold is a
rational homology manifold.

This is very pretty but is not the end of the story. One can alsoask if it is possible to charac-
terizeall possible vectors( f0; f1; : : : ; fn�1) coming fromn-dimensional simplicial polytopes. For
example, whenn = 3, one can show that a vector of positive integers( f0; f1; f2) comes from a
3-dimensional simplicial polytope if and only iff0 � 4 and (2.3) and (2.4) are satisfied. This can
be generalized to arbitrary dimensions, though the result takes some work to state. A nice account
can be found in Section 5.6 of Fulton’s book. What’s interesting is that the proof uses the Hard
Lefschetz Theorem for simplicial toric varieties (which isa very difficult theorem).
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3 The Ehrhart Polynomial

This section will use toric varieties to prove the followingwonderful result of Ehrhart concerning
lattice points in integer multiples of lattice polytopes.

Theorem 3.1 Let∆ be an n-dimensional lattice polytope in MR = Rn. Then there is a unique poly-
nomial E∆ (theEhrhart polynomial ) with coefficients inQ which has the following properties:

(a) For all integersν � 0,
E∆(ν) = #(ν∆\M)

(b) If the volume is normalized so that the unit n-cube determined by a basis of M has volume 1,
then the leading coefficient of E∆ is vol(∆).

(c) If int(∆) is the interior of∆, then thereciprocity law states that for all integersν > 0,

E∆(�ν) = (�1)n#(ν int(∆)\M):
Before giving the proof, let’s give a classic application indimension 2. If∆ is a lattice polygon,

then the Ehrhart polynomial is

(2.6) E∆(x) = area(∆)x2+Bx+1

sinceE∆(0) = #(0 �∆\M) = 1. If we let∂∆ denote the boundary of∆, then

E∆(1) = #(∆\M) = #(int(∆)\M)+#(∂∆\M) = E∆(�1)+#(∂∆\M);
where the last equality uses the reciprocity law. By (2.6), we also have

E∆(1) = area(∆)+B+1 and E∆(�1) = area(∆)�B+1:
Combining these equalities gives the following:� B= 1

2#(∂∆\M), so that the Ehrhart polynomial of a lattice polygon is

E∆(x) = area(∆)x2+ 1
2#(∂∆\M)x+1:� In particular, settingx= 1 givesPick’s Formula

#(∆\M) = area(∆)+ 1
2#(∂∆\M)+1:

We now turn to the proof of Theorem 3.1. While this result can be proved by elementary means,
we will give a proof which uses the cohomology of line bundleson the toric varietyX∆. Recall that
in Section 1 we represented∆ as the intersection (2.1). We also had the line bundle

L =OX∆
(D∆); D∆ = ∑

F
aFDF :

By (2.2), the global sections ofL are

(2.7) H0(X∆;L) = M
m2∆\M

C �χm:
15



To prove Theorem 3.1, we first consider theEuler-Poincaŕe characteristic

χ(X∆;L) = n

∑
i=0

(�1)i dim H i(X∆;L):
By a result of Kleiman, there is a polynomialhL of degree at mostn such that

(2.8) χ(X∆;L
ν) = hL(ν)
for all integersν.

However, the line bundleL is ample—this is part of the proof thatX∆ is projective. This has
nice consequences for the Euler-Poincaré characteristic. First, on any complete variety, we have:� Any positive tensor power of an ample line bundle is ample.

Furthermore, line bundles on complete toric varieties havethe following special properties:� An ample line bundle on a complete toric variety is generatedby its global sections.� LetL be a line bundle on a complete toric varietyX. If L is generated by its global sections,
thenH i(X;L ) = 0 for all i > 0.

These three bullets and the ampleness ofL imply that

H i(X∆;L
ν) = 0

wheni > 0 andν � 0.1 Using this, the Euler-Poincaré characteristic simplifiesto

χ(X∆;L
ν) = dim H0(X∆;L
ν)
whenν � 0, and combining this with (2.8), we conclude that the polynomial hL satisfies

(2.9) dimH0(X∆;L
ν) = hL(ν)
for all ν � 0.

The next observation is that the polytopes∆ andν∆ give the same normal fan and hence the
same toric varieties, i.e.,X∆ = Xν∆. Furthermore, the divisor associated toν∆ is

Dν∆ = νD∆;
which means that the associated ample line bundle isL
ν . It follows that if we apply (2.7) with
L
ν in place ofL, then we obtain

H0(X∆;L
ν) = M
m2ν∆\M

C �χm:
Combining this with (2.9), we conclude that

#(ν∆\M) = dim H0(X∆;L
ν) = hL(ν)
for all ν � 0. This shows thatE∆ = hL satisfies the first assertion of the theorem.

1Whenν = 0, note thatL
ν =OX∆
is generated by global sections.
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The second follows easily from the first, for ifE∆(x) = anxn+ � � �+a0; then

an = lim
ν!∞

E∆(ν)
νn = lim

ν!∞

#(ν∆\M)
νn = vol(∆):

The proof of the third assertion is more sophisticated. Recall from Theorem 5.1 of Lecture I
that the dualizing sheaf ofX∆ is

ωX∆
= OX∆

(�∑
F

DF);
where as usualDF is the divisor corresponding to the facetF of ∆. SinceX∆ is Cohen-Macaulay,
Serre Dualityimplies that

H i(X∆;L
(�ν))' Hn�i(X∆;L
ν 
ωX∆
)�:

In terms of the Euler-Poincaré characteristic, this easily implies

χ(X∆;L
(�ν)) = (�1)n χ(X∆;L
ν 
ωX∆
):

If we combine this with (2.8), we see that the Ehrhart polynomial E∆ = hL satisfies

E∆(�ν) = (�1)n χ(X∆;L
ν 
ωX∆
)

for all ν. But if ν > 0, thenL
ν is ample, so that theKodaira Vanishing Theoremimplies that

H i(X∆;L
ν 
ωX∆
) = 0

whenν > 0. Hence, for theseν, the above formula simplifies to

E∆(�ν) = (�1)n dim H0(X∆;L
ν 
ωX∆
):

The final step in the proof is to show that

dim H0(X∆;L
ν 
ωX∆
) = #(ν int(∆)\M)

for ν > 0. By our trick of replacing∆ with ν∆, it suffices to prove this forν = 1. Note that

L
ωX∆
= OX∆

�
D∆�∑FDF

�= OX∆

�
∑F(aF �1)DF

�;
where∆ = TFfm2MR j hm;nFi � �aFg. Since

int(∆)\M =\
F

fm2M j hm;nFi>�aFg=\
F

fm2M j hm;nFi � �(aF �1)g;
the methods used to prove (2.7) imply that

H0�X∆;OX∆
(∑F(aF �1)DF)�= M

m2int(∆)\M

C �χm:
This completes the proof of the theorem!
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We conclude this section with another application of the Ehrhart polynomial. Given a finite
setA = fm1; : : : ;msg � Zn, we get the (possibly nonnormal) projective toric varietyYA � Ps�1

defined in Section 7 of Lecture I. We now give a criterion forYA to be normal which involves the
Ehrhart polynomial of the polytope∆ = Conv(A ).

To state the criterion, we define theHilbert polynomialof YA to be the unique polynomialHA
for which

HA (ν) = #fmi1
+ � � �+miν

jmi1
; : : : ;miν

2A g
for ν � 0. One can show that the polynomialsHA andE∆ have the same leading term, which is
the normalized volume of∆. Then we have the following result of Sturmfels.

Theorem 3.2 The toric variety YA � P`�1 is normal if and only if the Hilbert polynomial HA
equals the Ehrhart polynomial E∆.

4 The BKK Theorem

So far, we have used the number of faces of a polytope (in the Dehn-Sommerville equations)
and the number of lattice points (in the Ehrhart polynomial). But what about the volume of the
polytope? This plays in subsidiary role in the Ehrhart polynomial. It is now time for the volume to
take a more central role.

We will begin with a rather special situation. Let∆� Rn be ann-dimensional lattice polytope.
Then considern Laurent polynomials

fi = ∑
m2∆\M

ci;mtm2 C [t�1
1 ; : : : ; t�1

n ℄; 1� i � n;
wheretm = ta1

1
� � �tan

n , m= (a1; : : : ;an), is the character denotedχm in Lecture I.

Theorem 4.1 If f1; : : : ; fn as above are generic, then the equations

f1 = � � �= fn = 0

have n!vol(∆) solutions in(C �)n.

To prove this, we will work on the toric varietyX∆. By (2.7), the polynomialsfi are global
sections of the ample line bundleL = OX∆

(D∆). This means that for generic sections, we have:� The number of solutions off1 = � � �= fn = 0 is finite.� We can assume that the solutions lie in the torus(C �)n� X∆.� The number of solutions is then-fold intersection number(D∆)n.

ConcerningDn
∆, we note that sinceX∆ is a possibly singular variety, we can’t use the usual defini-

tion of intersection number coming from cup product on cohomology. Instead, we use Kleiman’s
intersection theory for normal varieties, which in this case implies that

dim H0(X∆;L
ν) = (D∆)n

n!
νn+ lower order terms inν
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sinceL is ample. However, in the previous section, we showed that

dim H0(X∆;L
ν) = E∆(ν) = vol(∆)νn+ lower order terms inν:
This shows that (D∆)n = n!vol(∆):
Since this gives the number of solutions off1 = � � �= fn = 0 in (C �)n, the theorem is proved!

Theorem 4.1 can be generalized considerably. Suppose instead that we have arbitrary Laurent
polynomials

f1; : : : ; fn 2 C [t�1
1 ; : : : ; t�1

n ℄:
Then let∆i be theNewton polytopeof fi , which means that∆i is the convex hull of the exponent
vectors of the nonzero terms offi . In this situation, one can define themixed volume

MVn(∆1; : : : ;∆n):
This is discussed in Section 5.4 of Fulton’s book. Then theBernstein-Kushnirenko-Khovanskii
Theoremis as follows:

Theorem 4.2 Consider the solutions in(C �)n of the equations

f1 = � � �= fn = 0:
(a) If there are only finitely many solutions, then the number of solutions is bounded above by

MVn(∆1; : : : ;∆n).
(b) If the fi have generic coefficients, then the number of solutions equals MVn(∆1; : : : ;∆n).

One of the properties of the mixed volume is that when all of the polytopes are the same, then

MVn(∆; : : : ;∆) = n!vol(∆):
It follows that Theorem 4.1 is a special case of the BKK theorem.

5 Reflexive Polytopes and Fano Toric Varieties

The dualizing sheaf onPn is easily seen to be

ωPn =OPn(�(n+1));
which means that its dualOPn(n+ 1) is ample. More generally, letV be a complete Cohen-
Macaulay variety with dualizing sheafωV . Then we say thatV is Fano if the dual ofωV is an
ample line bundle.

The goal of this section is to characterize Fano toric varieties. First recall that the dualizing
sheaf of a toric varietyX is

ωX =OX(�∑ρDρ):
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It is customary to callKX = �∑ρ Dρ thecanonical divisorof X. Thus being Fano means that the
anticanonical divisor�KX = ∑ρ Dρ is ample.

Being Fano is a very special property. Hence, in order for thetoric variety of a polytope to be
Fano, the polytope needs to be rather special. This is where we encounter Batyrev’s notion of a
reflexive polytope. Here is the precise definition.

Definition 5.1 A n-dimensional lattice polytope∆ � MR ' Rn is reflexive if the following two
conditions hold:

(a) All facets F of∆ are supported by an affine hyperplane of the formfm2MR j hm;nFi=�1g
for some nF 2 N.

(b) int(∆)\M = f0g.
Reflexive polytopes have a very pretty combinatorial duality. Let ∆ be an lattice polytope, and

let ∆Æ be the polar polytope defined in Section 1 of this lecture. Besides(∆Æ)Æ= ∆, Batyrev showed
that the basic duality between∆ and∆Æ is as follows.

Lemma 5.2 ∆ is reflexive if and only if∆Æ is reflexive.

Reflexive polytopes are interesting in this context becauseof the following result, which char-
acterizes Fano toric varieties.

Theorem 5.3 A complete toric variety X is Fano if and only if there is a reflexive polytope∆ such
that X= X∆.

To prove this, first assume that∆ is reflexive. Then the definition of reflexive implies that

∆ =\
F

fm2MR j hm;nFi � �1g:
ThusaF = 1 for all F, which means that the associated divisor is

D∆ = ∑
F

aFDF = ∑
F

DF =�KX:
We know thatD∆ is ample, which proves thatX∆ is Fano. The converse is equally easy, and the
theorem is proved!

The simplest example of a Fano toric variety isPn. The next case to consider is weighted
projective space, where the answer is slightly more interesting.

Lemma 5.4 Let X= P(q0; : : : ;qn) be a weighted projective space, and let q= ∑n
i=0qi. Then X is

Fano if and only if qi jq for all i.

In any given dimension, there are only finitely many reflexivepolytopes up to unimodular
transformation, which means that there are only finitely many toric Fano varieties of dimension
n up to isomorphism. Smooth toric Fano varieties have been classified in low dimensions, and
attempts are underway to classifyall 4-dimensional reflexive polytopes.
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Since reflexive polytopes come in pairs∆, ∆Æ, we get toric Fano varietiesX∆, X∆Æ which are
in some sense dual. In Lecture III, we will use these toric varieties to create “dual” families of
Calabi-Yau hypersurfaces which are important in mirror symmetry.

Here is an example of a reflexive polytope and its dual.

Example 5.5 Let M = Z3, and consider the cube∆ � MR centered at the origin with vertices(�1;�1;�1). This gives the toric varietyX = X∆. To describe the fan ofX, note that the polar
∆Æ � NR is the octahedron with vertices�e1;�e2;�e3. Thus the normal fan is formed from the
faces of the octahedron, giving a fanΣ whose 3-dimensional cones are the octants ofR3. It follows
easily thatX = P1�P1�P1.

We have the following pictures of∆ and∆Æ:
y

x

z

∆ ⊂  MR

y

x

z

∆˚ ⊂  NR

It is easy to check that the cube∆�MR and the octahedron∆Æ � NR are dual reflexive polytopes.
In particular,∆Æ gives a “dual” toric varietyXÆ = X∆Æ, which is determined by the normal fan of
∆Æ (= the fan inMR formed by cones over the faces of the cube∆). Hence we have a pair of “dual”
toric varieties,X andXÆ. It is interesting to observe thatX is smooth whileXÆ is rather singular. In
fact, the 3-dimensional cones ofΣÆ are not even simplicial—they’re all infinite pyramids. However,
since∆ and∆Æ is reflexive, we know thatX andXÆ are Fano.

Note that∆ and∆Æ also differ with respect to lattice points. For∆Æ �NR, the only lattice points
in N are the origin and vertices, while∆ � MR has many more since the midpoints of the edges
and the centers of the faces lie inM. This example also shows that we can start with a smooth toric
variety (such asP1�P1�P1) and by “duality” wind up with something singular. As we willsee
in Lecture III, this has implications for mirror symmetry.
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Lecture III: Toric Varieties and Mirror Symmetry

1 The Quintic Threefold

In 1991, Candelas, de la Ossa, Green and Parkes made some startling predictions about rational
curves on a generic quintic hypersurfaceV � P4 (thequintic threefold). In particular, they claimed
thatV contained the following numbers of rational curves:� 2875 lines.� 609250 conics.� 317206375 cubics.� 242467530000 quartics.

More generally, if we let

nd = “# rational curves of degreed in V”

(we’ll explain the quotation marks below), then Candelas et. al. gave the following receipe fornd:

(a) The differential equation

0 = �
x

d
dx

�4
y+ 2 �55x

1+55x

�
x

d
dx

�3
y+ 7 �54x

1+55x

�
x

d
dx

�2
y+ 2 �54x

1+55x

�
x

d
dx

�
y+ 24�5x

1+55x
y:

has a regular singular point atx= 0 with maximally unipotent monodromy.

(b) Two solutions of this differential equation are

y0(x) = ∞

∑
n=0

(5n)!(n!)5 (�1)nxn

and

y1 = y0(x) log(�x)+5
∞

∑
n=1

(5n)!(n!)5

h 5n

∑
j=n+1

1
j

i(�1)nxn:
(c) The differential equation �

x
d
dx

�
Y = �55x

1+55x
Y

has the solution
Y = c

1+55x
; c constant:

(d) Finally, settingc= 5 andq= exp(y1(x)=y0(x)), we have

5+ ∞

∑
d=1

ndd3 qd

1�qd = 5(1+55x) 1
y0(x)2

�q
x

dx
dq

�3:
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2 Instanton Numbers

Making sense of the numbersnd is a nontrivial task. To define these rigorously, the first steps are
as follows:� Define the moduli stackM0;0(P4;d) of 0-pointed stable curvesf : C! P4 of genus 0 and

degreed.� Define the vector bundleVd on M0;0(P4;d) whose fiber atf : C! P4 is H0(C; f �OP4(5)).
Using this, we define theGromov-Witten invariantof the quintic threefoldV to behI0;0;di= Z

M0;0(P4;d) ctop(Vd):
In 1995, Kontsevich computed thathI0;0;4i= 15517926796875

64
:

Gromov-Witten invariants can be defined for any smooth variety. One of the major unsolved
problems in mirror symmetry is to understand the enumerative significance of these numbers.

For the quintic threefold, we can approach this problem using instanton numbers nd, which are
defined recursively by the equationhI0;0;di= ∑

kjd nd=k k�3:
Here are three important theorems about the instanton numbers of the quintic threefold.

Theorem 2.1 (Givental,Lian/Liu/Yau) The instanton numbers nd of the quintic threefold V satisfy
the identity given in item (d) on page 22.

Theorem 2.2 (Katz,Johnsen/Kleiman) For d� 9, nd is the number of rational curves of degree d
contained in the quintic threefold V.

Theorem 2.3 (Pandharipande,Cox/Katz) If the strong form of the ClemensConjecture for the
quintic threefold V holds for d� 10, then

n10 = # rational curves of degree 10 on V+6�17;601;000:
In its weakest form, the Clemens Conjecture asserts that foreachd, a generic quintic threefold

contains only finitely many rational curves of degreed. Currently, this has been proved ford� 9.
So for higher degrees, we need to do two things:� Prove the Clemens Conjecture.� Relatend to the number of rational curves of degreed onV.

These are both open problems. Theorem 2.3 indicates that therelation in the second bullet may be
nontrivial.
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3 The Quintic Mirror

Items (a)–(c) page 22 come from the Hodge theory of thequintic mirror VÆ. This is the threefold
defined as follows:� Start with the quintic hypersurfaces inP4 defined by

(3.1) x5
1+x5

2+x5
3+x5

4+x5
5+ψ x1x2x3x4x5 = 0;

whereψ 6= 0 is a complex number such thatψ5 6=�55.� Take the quotient of the hypersurface under the action of thegroup

G= f(a1; : : : ;a5) 2 Z5
5 j∑i ai � 0 mod 5g=Z5;

where theZ5 is embedded diagonally andg= (a1; : : : ;a5) 2G acts onP4 as

g � (x1; : : : ;x5) = (µa1x1; : : : ;µa5x5):
Here,µ = e2π i=5 is a primitive fifth root of unity.� Finally,VÆ

ψ is a resolution of singularities of the quotient hypersurface.

This gives a 1-dimensional familyVÆ
ψ of smooth threefolds parametricized byψ. Furthermore,VÆ

ψ
is a Calabi-Yau threefold, so thatH0;3(VÆ

ψ) has dimension 1. A holomorphic 3-form onVÆ
ψ is

Ω = Res
� ψ

x5
1+ : : :+x5

5+ψx1 � � �x5
(x1dx2^dx3^dx4^dx5�

x2dx1^dx3^dx4^dx5+x3dx1^dx2^dx4^dx5�
x4dx1^dx2^dx3^dx5+x5dx1^dx2^dx3^dx4)�:

The periods ofΩ, as we varyx= ψ�5, satisfy the Picard-Fuchs equation given in item (a) page 22.
Thus the functionsy0(x) andy1(x) in item (b) on page 22 are periods of the quintic mirror family.

Furthermore, using the Gauss-Manin connection∇, we define theYukawa couplingto be

(3.2) hθ ;θ ;θi= Z Ω^∇θ ∇θ ∇θ Ω

whereθ = x d
dx. This Yukawa coupling satisfies the differential equation in item (c) on page 22.

Now we come to item (d) on page 22, which is the astonishing equation

5+ ∞

∑
d=1

ndd3 qd

1�qd = 5(1+55x) 1
y0(x)2

�q
x

dx
dq

�3:
This says that, after a change of variable, the Yukawa coupling on the quintic mirror gives the
instanton numbers on the quintic threefold. Hence we have a link between� the enumerative geometry of the quintic threefold, and� the Hodge theory of the quintic mirror.

This is one of the most amazing aspects of mirror symmetry.
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Finally, as a hint of things to come, let’s explain the relation between the quintic threefold and
its mirror in more intrinsic terms. First observe thatωP4 = OP4(�5) has dualOP4(5). It follows
that the quintic threefoldV is an anticanonical divisor, which automatically makes it Calabi-Yau.
Furthermore,P4 is the toric variety of the standard 4-simplex

∆4 = conv(0;e1;e2;e3;e4)�MR = R4:
While ∆4 is not reflexive, one can show that

∆ = 5∆4� (1;1;1;1)
is reflexive and satisfiesX∆ = P4.

The polar of∆ is the reflexive polytope

∆Æ = conv(�e1�e2�e3�e4;e1;e2;e3;e4)� NR:
This gives the “dual” toric varietyX∆Æ. Section 4.2 ofMirror Symmetry and Algebraic Geometry
shows that:� X∆Æ = P4=G, whereG is the group introduced above.� The homogeneous coordinate ring ofX∆Æ is C [x0; : : : ;x4℄. This is graded byZ�G, where the

degree of a monomialxa0
0
� � �xa4

4
is�

∑4
i=0ai;(�a1�a2�a3a4;a1;a2;a3;a4)� 2 Z�G:� The anticanonical divisor has degree(5;0) 2 Z�G, where 02G is the identity. Furthermore,

the only monomials of degree(5;0) are

x5
0; x5

1; x5
2; x5

3; x5
4; x0x1x2x3x4:

The last bullet shows that anticanonical hypersurfaces onX∆Æ are defined by equations of the form

a0x5
0+a1x5

1+a2x5
2+a3x5

3+a4x5
4+a6x0x1x2x3x4 = 0:

However, using the torus action to rescale the variables individually, one easily sees that every such
hypersurface is isomorphic to one defined by an equation of the form (3.1). Hence the construction
of the quintic mirror is a special case of the Batyrev mirror construction, which will be described
in more detail in Section 5.

4 Superconformal Field Theory

Our next task is to discuss the physics which led Candelas andhis coworkers to their formulas for
nd. But before plunging into mirror symmetry, let me point out that modern mathematical physics
uses an amazing amount of algebraic geometry and commutative algebra.

For example, consider the following brief description of aLandau-Ginzburg theory. In the
Lagrangian formulation of such a theory, the most importantterm of the action is

S= Z d2zd2θF(Φi);
where:
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� z is a local coordinate on the Riemann surface.� θ is a fermionic superspace coordinate.� F is a weighted homogeneous polynomial.� Φi is a chiral superfield.

In this situation, the Euler-Lagrange equations are

∂F
∂φi

= 0;
whereφi is the bosonic component ofΦi .

Starting from the vaccum stateV, we can create new statesP(Φi)(V), whereP is a polynomial
in theφi . By the Euler-Lagrange equations, these states correspondto elements of the quotient

(3.3) C [φ1; : : : ;φn℄=h ∂F
∂φ1

; : : : ; ∂F
∂φn
i:

This is thechiral ring of the Landau-Ginzburg theory.
Now, if you are like me, most of the above made absolutely no sense. But (3.3) is a Jacobian

ring! These are objects I know well—they’re even mentioned in my papers! But a chiral ring?
What’s that?

This is the problem faced by mathematicians trying to understand mirror symmetery—the
physics is very sophisticated. For me, the most frustratingaspect is that I don’t have access to
the intuitions that lie behind these magnificent but mathematically nonrigorous theories.

Keeping this problem in mind, let me say a few words about mirror symmetry. Brace yourself
for a lot of incomprehensible words.

Given a smooth Calabi-Yau threefoldV and a complexified Kähler class (to be described in
Section 6), we get aN = 2 heteroticsuperconformal field theory(SCFT) called aσ -model. Such
theories deal with strings propagating inR3;1�V, though we typically ignore the spacetimeR3;1
and concentrate on theV part. This leads to maps from Riemann surfaces intoV.

Any N = 2 SCFT includes a Hilbert spaceH of states and a representation ofu(1)�u(1) on
H. For theσ model case, this representation has eigenspaces:

(3.4)
(p;q)�eigenspace= Hq(V;^pTV)' H3�p;q(V)(�p;q)�eigenspace= Hq(V;Ωp

V)' H p;q(V):
We also note that the moduli space of SCFTs coming fromσ -models is governed by� Complex moduli (vary the complex structure ofV).� Kähler moduli (vary the complexified Kähler class).

In the 1980’s, it was noticed that changing the sign of the first generator of theu(1)� u(1)
representation gave anabstractSCFT isomorphic to the original one. The basic idea of mirror
symmetry is thatthis abstract SCFT should be theσ -model of some other Calabi-Yau threefold,
themirror VÆ of V . Since the sign change interchanges the eigenspaces (3.4), it follows that

H p;q(V)' H3�p;q(VÆ):
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This also interchanges complex and Kähler moduli, so that the complex (resp. Kähler) moduli of
V becomes the Kähler (resp. complex) moduli ofVÆ.
Example 4.1 The quintic threefoldV has 1-dimensional Kähler moduli becauseH2(V;C ) =
H1;1(V)' C . It follows that the quintic mirrorVÆ should have 1-dimensional complex moduli. So
the presence of the single moduli parameterx= ψ�5 for the quintic mirror is no accident.

The fact thatV andVÆ give isomorphic SCFTs implies that they have the samethreepoint
correlation functions. For the quintic threefoldV, the correlation function of interest ishH;H;Hi,
whereH is the hyperplane section ofV. This starts off as some sort of Feynman path integral but
can be reduced to hH;H;Hi= 5+ ∞

∑
d=1

ndd3 qd

1�qd :
In the right-hand side,H [H[H = 5 is the “topological term” and thend are holomorphic instan-
tons which arise as non-perturbative world sheet corrections.

On the mirror side, the Yukawa couplinghθ ;θ ;θi defined in (3.2) is also a correlation function,
though to normalize it, we need to divide byy0(x)2. Then mirror symmetry says that these corre-
lation functions coincide once we change variables according to the mirror map. This is the map
which takesxd=dx to qd=dq, whereq is as in item (d) on page 22. Thus we obtain the equation

5+ ∞

∑
d=1

ndd3 qd

1�qd = 5(1+55x) 1
y0(x)2

�q
x

dx
dq

�3

from page 22.

5 The Batyrev Mirror Construction

Now let∆�MR ' Rn be ann-dimensional reflexive poltyope with polar∆Æ �NR. Then Batyrev’s
basic observation is each polytope gives a family of anticanonical hypersurfaces

V � X∆

V
Æ � X∆Æ

each of which is a Calabi-Yau variety of dimensionn�1. This is theBatyrev mirror construction.
Here are some interesting facts about Batyrev mirrors:� We writeV andV

Æ
instead ofV andVÆ is that the former may be singular. In general, one needs

to desingularize. However, since a Calabi-Yau variety has trivial canonical class, this needs to
be done without changing the canonical class—a so-called “crepant desingularization”. This
works nicely whenn= 4 (the case of interest to physics), but in higher dimensionsone has to
settle for resolutions whereV andVÆ are orbifolds (of an especially nice type).� Whenn = 4, V andVÆ are smooth Calabi-Yau threefolds, and it is expected that they should
satisfy mirror symmetry. There is a physics “proof” of this when∆ is a reflexive simplex, but
the general case is still open.
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� In general, whenV andVÆ have dimensionn�1, we have

dim H1;1(V) = dim Hn�2;1(VÆ) and dimHn�2;1(V) = dim H1;1(VÆ):
WhenV andVÆ, this takes care of all Hodge numbers. But in higher dimensions,

dim H p;q(V) 6= dim Hn�1�p;q(VÆ)
can occur in cases whenV andVÆ are simplicial but not smooth. To remedy this, one defines
stringy Hodge numbers hp;q

st (V) which satisfy the mirror equation. These are related to the
recently-definedorbifold cohomologyof an orbifold.� In 1992, researchers discovered 7555 weighted projective spaces which gave rise to Calabi-
Yau threefolds. But this list exhibited only a partial symmetry. How could this be consistent
with mirror symmetry? The answer is that the list was produced before Batyrev’s definition
of reflexive polytope. When the list was recomputed in 1994 and all of the “missing mirrors”
were found using Batyrev duality.

6 Other Aspects of Mirror Symmetry

Here are some of the many aspects of mirror symmetry not mentioned so far:� Complexified Kähler Cone.Let V be a Calabi-Yau of dimension� 3. Then

H2(V;R) = H1;1(V)R � K! Kähler cone ofV:
The complexified Kähler space is

KC = fB+ iJ j J 2 K;B2 H2(V;R)g=H2(V:Z):
This is a basic building block for the Kähler moduli space ofV.� Boundary Points of Moduli Spaces.Mathematical versions of mirror symmetry take place at
boundary points of moduli spaces. For the quintic threefold, x= ψ�5 is a local coordinate for
amaximally unipotent boundary point. The corresponding point on the boundary of the Kähler
moduli space is alarge radius point.� Multiple Mirrors and the GKZ Decompostion. When we compare the complex moduli ofV
to the Kähler moduli ofVÆ, the latter is typically much smaller than the former. This doesn’t
seem consistent with mirror symmetry. The answer is to enlarge the Kähler moduli space. For
example, in the toric case, it can happen that different simplicial fansΣ can refine the normal fan
of a reflexive polytope∆. The toric varietiesXΣ have the sameH2 but different Kähler cones.
All of this can be described torically using theGKZ decomposition. (This is the smaller version
of the decomposition, which in physics terms corresponds totheσ -models of the Calabi-Yau
hypersurfaces in theXΣ. The larger version includes more cones which correspond tocertain
Landau-Ginzburg theories.)� Mirror Theorems. For Calabi-Yau complete intersections in Fano toric varieties, Givental and
Lian/Liu/Yau have proved very powerful Mirror Theorems which generalize the formula at the
bottom of page 22.
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� Quantum Cohomology and the A-Variation of Hodge Structure.Gromov-Witten invariants
can be used to define a deformation of cup product calledquantum cohomology. This is related
to a (1+1)-dimensionaltopological quantum field theory. One can also turn this into theA-
variation of Hodge structure, which is a polarized variation of Hodge structure over the Kähler
moduli space. Mirror symmetry can be formulated as the assertion that the A-VHS ofV over
its Kähler moduli space is isomorphic (as a polarized VHS) to the geometric VHS ofVÆ over
its complex moduli space.� Conifold Transitions. Every family of Calabi-Yau threefolds gives a model of the universe. In
1995, Greene/Morrison/Strominger discovered how to get from one model to another by what
is called aconifold transition. This can be pictured as follows:eV �����!

degenerate
V  ���

resolve
V# # # #

black
hole

vanishing
cycle massless

elementary
particle� Modern Mirror Symmetry. What I have described so far can be described as “classical”

mirror symmetry. More recently, people have explored the following topics:3 Homological mirror symmetry (Kontsevich).3 D-branes, F-theory, M-theory (physics).3 VÆ is the complexified moduli space of Lagrangian tori onV (Strominger/Yau/Zaslow).3 Vertex algebras (Borisov).3 Chiral De Rham complexes (Malikov/Schechtman)� Science Fiction.In 1998, Stephen Baxter wrote the science fiction novelMoonseed. Here is
some of the dialog between characters named Monica and Alfred:

************

Monica: Now, the 6 missing dimensions are there, but they arecrumpled up . . . The trouble
is, there are tens of thousands of ways for space to crumple up. . . And in each internal space,
the strings adopt a different solution.

************

Monica: Theoreticians are suggesting there is a—tear in space—at the heart of Venus.

Alfred: A tear?

Monica: A way into another internal space. Exotic particlesas massive as bacteria.

************

Alfred (in an email to Monica): Take one of your 10-dimensional string objects . . . As you
approach zero width, you generate quantum-mechanical waves . . . The waves are extremal
black holes.
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