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1. Varieties
Most ommon varieties over C:� Cn and aÆne varieties

V = V(f1; : : : ; fs) � Cn
� Pn and projetive varieties

V = V(F1; : : : ; Fs) � Pn
Example 1.1. Let C� = C n f0g. Then(C�)n � Cn is an aÆne variety via
(t1; : : : ; tn) 7! (t1; : : : ; tn;1=t1 � � � tn)(C�)n ' V(x1x2 � � �xn+1 � 1) � Cn+1:
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(C�)n is the n-dimensional omplex torusand is the \tori" in \tori variety".
V nW is Zariski open in V when W � V .
Example 1.2. (C�)n = CnnV(x1 � � �xn)is Zariski open in Cn.
V is irreduible if it an't be writtenV = V1 [ V2 for V1 6= V and V2 6= V .
2. Tori Varieties
De�nition 2.1. A tori variety V isirreduible, ontains (C�)n as a Zariskiopen subset, and the ation of (C�)n onitself extends to an ation on V . 4



Example 2.2. Cn and Pn are torivarieties, where (C�)n � Pn via(t1; : : : ; tn) 7! (1; t1; : : : ; tn):
Also:
1. m 2M = Zn gives the harater�m : (C�)n! C� de�ned by�m(t1; : : : ; tn) = tm11 � � � tmnn :�m is a Laurent monomial.
2. u 2 N = Zn gives the 1-parametersubgroup �u : C�! (C�)n de�ned by�u(t) = (tu1; : : : ; tun):
3. m 2M;u 2 N give hm;ui = m � u 2 Z.5



3. ExamplesExample 3.1. V;W tori ) so is V �W .Example 3.2. V(y2 � x3) � C2 is atori variety via t 7! (t2; t3). This is non-normal. The only 1-dimensional normaltori varieties are C�, C and P1.Example 3.3. V = V(xy � zw) � C4 isa tori variety via(t1; t2; t3) 7! (t1; t2; t3; t1t2t�13 ):Sine xy = zw on V , we havexaybz = xayb�xyw � = xa+yb+w�:So �m = �(a;b;) extends to V ifa � 0; b � 0; a+  � 0; b+  � 0:6



Example 3.4. For P2, u 2 N gives a1-parameter subgroup �u : C� ! P2.What is limt!0 �u(t)? Let u = (a; b) 2N = Z2, so that �u(t) = (1; ta; tb). Then:
limt!0�u(t) =

8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

(1;0;0) a; b > 0(1;0;1) a > 0; b = 0(1;1;0) a = 0; b > 0(1;1;1) a = b = 0(0;0;1) a > b; b < 0(0;1;0) a < 0; a < b(0;1;1) a < 0; a = b:To see how the �fth ase works, notelimt!0(1; ta; tb) = limt!0(t�b; ta�b;1).This gives the piture:
������ 7



4. Cones
Let NR = Rn. A rational polyhedralone � � NR is:
� = n�1u1+ � � �+ �`u` j �1; : : : ; �` � 0o;
where u1; : : : ; u` 2 N = Zn. Then:� � is strongly onvex if �\ (��) = f0g.� dim� is the dimension of �.� A fae of � is f` = 0g \�, where ` is alinear form whih is � 0 on �.� An edges � of � is a 1-dim fae.� The primitive element n� is the uniqueminimal generator of � \N .� � is generated by the n� of its edges.� A faet of � is a odimension-1 fae.8



De�nition 4.1. A strongly onvexrational polyhedral � has dual one
�_ = nm 2MR = Rn j hm;ui � 0 8u 2 �o:
This is rational polyhedral of dim n.
Elements of N are alled lattie pointsof NR and elements of M are alledlattie points of MR.
Example 4.2. Consider � � NR = R3:
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This one has primitive elementsn1 = (1;0;0); n2 = (0;1;0);n3 = (1;0;1); n4 = (0;1;1)and inward pointing normalsm1 = (1;0;0); m2 = (0;1;0);m3 = (0;0;1); m4 = (1;1;�1):These generate the dual one �_ in MR.Thus (a; b; ) 2 �_ i�a � 0; b � 0; a+  � 0; b+  � 0:
In general, the set of linear ombinationsof haraters �m for m 2 �_ \M isC[�_ \M ℄:This is a ring sine �m � �m0 = �m+m0.10



In terms of Laurent monomials, we haveC[�_ \M ℄ � C[t�11 ; : : : ; t�1n ℄:
5. Cones and AÆne ToriVarieties
A strongly onvex rational polyhedralone � � NR determines the aÆne torivariety U� as follows.
By Gordan's Lemma, �_ \M is gener-ated over Z�0 by m1; : : : ;m` 2 M . Map(C�)n! C` by sending (t1; : : : ; tn) to��m1(t1; : : : ; tn); : : : ; �m`(t1; : : : ; tn)�:Then U� � C` is the Zariski losure ofthe image of this map. 11



We an think of this is as follows. Lety1; : : : ; y` be variables, and onsiderC[y1; : : : ; y`℄! C[�_\M ℄ = C[�m1; : : : ; �m`℄de�ned by sending yi to �mi. This mapis onto and its kernel I � C[y1; : : : ; y`℄onsists of all algebrai relations amongthe �mi. If I = hf1; : : : ; fsi, thenU� = V(f1; : : : ; fs) � C`:
Examples 5.1 and 5.3. For the oneof Example 4.2, the inward normalsm1 = (1;0;0); m2 = (0;1;0);m3 = (0;0;1); m4 = (1;1;�1)generate �_ \M . 12



Thus C[�_\M ℄ = C[�m1; �m2; �m3; �m4℄.Then m1+m2 = m3+m4 implies thatxy � zw is in the kernel of
C[x; y; z; w℄! C[�_ \M ℄:

In fat, xy� zw generates the kernel, so
U� = V(xy � zw) � C4:

This is the tori variety of Example 3.3.
In general, C[�_ \M ℄ is the oordinatering of U�. This is the ring of polynomialfuntions on the aÆne variety U�.Thus C[�_\M ℄ tells us whih haraterson (C�)n extend to funtions de�ned onall of U�. 13



6. Normality
A variety is normal if its loal rings areintegrally losed in their �elds of fra-tions. The aÆne variety U� is normal.Question: When is an aÆne torivariety normal?Example 6.1. Consider

The cone σ The cone σ∨

The generators of �_\M are mi = (1; i)for i = 0; : : : ;4. 14



U� � C5 is the Zariski losure of theimage of (C�)2! C5 de�ned by(t; u) 7! (t; tu; tu2; tu3; tu4):What if we omit some of the mi?1. m0;m4 give (C�)2! C2 where(t; u) 7! (t; tu4):The Zariski losure is C2 but the mapis 4-to-1 and m0;m4 don't generate Z2.Messed up the lattie.2. m0;m1;m4 give (C�)2 ! C3 where(t; u) 7! (t; tu; tu4):The Zariski losure is x3z = y4. Themap is 1-to-1 and m0;m1;m4 generateZ2. Not normal sine odim(sing) = 1.15



Let � � NR = Rn be a strongly on-vex rational polyhedral one. Given mi 2�_ \M for i = 1; : : : ; `, the �mi give
(C�)n �! C`:

Theorem 6.2. The Zariski losure ofthe image of this map is the normalaÆne tori variety U� determined by �and N if and only if �_\M is generatedover Z�0 by mi for i = 1; : : : ; `.
This shows that an aÆne tori variety isnormal preisely when you use all lattiepoints in the dual one.
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7. Fans and Tori VarietiesA fan is a �nite olletion � of ones inNR with the properties:� Eah � 2 � is a strongly onvexrational polyhedral one.� If � 2 � and � is a fae of �, then� 2 �.� If �; � 2 �, then �\� is a fae of eah.Eah � 2 � gives the aÆne tori varietyU�, and if � is a fae of �, then U� is aZariski open subset of U�.
De�nition 7.1. Given a fan � in NR,X� is the variety obtained from the aÆnevarieties U�, � 2 �, by gluing togetherU� and U� along their ommon opensubset U�\� for all �; � 2 �. 17



Example 7.2. For � � NR, we get afan by taking faes of � (inluding �).The tori variety of this fan is U�.Example 7.3. The fan for P1 is:t
The ones �1 = [0;1) and �2 = (�1;0℄give U1 with oordinate ring C[t℄ and U2with oordinate ring C[t�1℄, whih pathin the usual way to give P1.Example 7.4. For a basis e1; : : : ; en ofN = Zn, set e0 = �e1 � � � � � en. ThenPn is the tori variety of the fan whoseones are generated by all proper sub-sets of fe0; e1; : : : ; eng. When n = 2, thisfan appeared in Example 3.4. 18



Example 7.5. The fan for P1 �P1 is:

8. Properties of Tori Varieties
There are one-to-one orrespondenesbetween the following:� The limits limt!0 �u(t) for u 2 j�j =S�2� � (j�j is the support of �).� The ones � 2 �.� The orbits of the torus ation on X�.19



The orrespondenes is as follows:An orbit orresponds to a one � i�limt!0 �u(t) exists and lies in the orbitfor all u in the relative interior of �.For an orbit orb(�), we have:� dim�+dimorb(�) = n.� orb(�) � orb(�) if and only if � � �.
Theorem 8.1. Let X� be the torivariety of a fan � in NR. Then:� X� is ompat , j�j = NR.� X� is smooth , all � 2 � are smooth(generated by a subset of a Z-basis).� X� is simpliial (has �nite quotientsingularities) , all � are simpliial(generated by a subset of a Q-basis).20



9. Homogeneous Coordinates
Assign a variable to eah 1-dimensionalone in the fan of X�. Thus:�1; : : : ; �r 1-dim onesn1; : : : ; nr primitive generatorsD1; : : : ; Dr orbit losures in X�x1; : : : ; xr variables:
A monomial �ixaii gives a divisor D =Pi aiDi, so we write xD = �ixaii . GivenxE = �ixbii , de�ne deg(xD) = deg(xE)() D = E +div(�m) for some m 2M() ai = bi+ hni;mi for some m 2M .This uses div(�m) = Pihni;miDi 21



deg(xD) lies in the Chow group
An�1(X�) = Zr=�(M);

where � :M ! Zr is de�ned by
�(m) = �hn1;mi; : : : ; hnr;mi�:Then C[x1; : : : ; xr℄ is the homogeneousoordinate ring of X�.Example 9.1. For Pn, we get the ringC[x0; : : : ; xn℄ with the usual grading.

Example 9.2. For P1 �P1, we get di-visors D1; D2 orresponding to the hori-zontal rays in the fan and divisors D3; D4orresponding to vertial ones. Let theorresponding variables be x1; x2; x3; x4.22



To grade this, de�ne Z4! Z2 by
(a1; a2; a3; a4) 7! (a1+ a2; a3+ a4):The kernel of this map is the image of�. Hene

deg(xa11 xa22 xa33 xa44 ) = (a1+ a2; a3+ a4):This is preisely the usual bigrading onC[x1; x2;x3; x4℄, where eah graded pieeonsists of bihomogeneous polynomialsin x1; x2 and x3; x4.To get oordinates, we need an analogof the \irrelevant" ideal hx0; : : : ; xni forPn. We do this as follows. 23



Given � 2 �, set
x�̂ = �ni=2� xiand B = hx�̂ j � 2 �i. This uses allones of the fan, while the homogeneousoordinate ring uses only the 1-dim ones.

Also set G = HomZ(An�1(X�);C�). Thisis the kernel of the dual of the map(C�)r ! (C�)n indued by �.
G � (C�)r implies that G ats naturallyon Cr and leaves V(B) invariant. Thuswe an form the quotient�Cr nV(B)�=G:
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Theorem 9.3. Let X� be tori varietywhere n1; : : : ; n` span NR. Then:1. X� is the universal ategorialquotient �Cr nV(B)�=G.2. �CrnV(B)�=G is a geometri quotientif and only if X� is simpliial.
We have (C�)n ' (C�)r=G by de�nition.Then (C�)r � Cr indues
(C�)n ' (C�)r=G � �Cr nV(B)�=G ' X�:Sine (C�)r ats on Cr n V(B), (C�)nats on X�. And ategorial quotientspreserve normality, so that the quotientis a normal tori variety. 25



Example 9.4. For Pn, we get the usualrepresentation Pn ' (Cn+1 n f0g)=C�.
Example 9.5. For P1 �P1, we haveB = hx1x3; x1x4; x2x3; x2x4i. ThenV(B) = (f0g �C2) [ (C2 � f0g)
and G ' (C�)2 ats on C4 via
(�; �)�(x1; x2; x3; x4) = (�x1; �x2; �x3; �x4):Hene the quotient of Theorem 9.3 is�(C2 n f0g)=C��� �(C2 n f0g)=C��;
whih is how one represents P1�P1 asa quotient. 26



Example 9.7. (Simpliial, Not Smooth)Let � � NR = R2 be generated by n1 =(1;0), n2 = (1;2). The homogeneousoordinate ring is C[x1; x2℄, where x1; x2have degree 1 mod 2. Furthermore:1. U� = V (xz � y2) � C3.2. G ats on C2 by multipliationby �1.3. The ring of invariants is C[x1; x2℄G =C[x21; x1x2; x22℄.4. The quotient � : C2! U� is the map(x1; x2)! (x21; x1x2; x22).Note that C2 ! U� is 2-to-1. This is aa �nite quotient singularity.
27



Example 9.8. (Not Simpliial)Let � be the 3-dim one of Example 3.3.The ring C[x1; x2; x3; x4℄ is graded by Z,where the variables have degrees
deg(x1) = deg(x4) = 1deg(x2) = deg(x3) = �1:Furthermore:1. U� = V(xy � zw) � C4.2. G = C� ats via � � (x1; x2; x3; x4) =(�x1; ��1x2; ��1x3; �x4).3. The invariant ring is C[x1; x2; x3; x4℄G= C[x1x2; x3x4; x1x3; x2x4℄.4. The quotient map � : C2! U� is(x1; x2; x3; x4) 7!(x1x2; x3x4; x1x3; x2x4).28



If p 2 U�, then:� p 6= 0 ) ��1(p) is a G-orbit.� p = 0 ) ��1(p) = (C�f0g�f0g�C)[(f0g�C�C�f0g).In general, a \ategorial quotient" isonstruted using the ring of invariantsunder the group ation.
10. The Tori Variety of aPolytope
A lattie polytope � in MR = Rn isthe onvex hull of a �nite subset of M .We represent � as an intersetion ofhalfspaes as follows. 29



For eah faet F of �, there is an inwardnormal primitive vetor nF 2 N and aF 2Z suh that
� = \F is a faetfm 2MR j hm;nF i � �aFg:
Given a fae F of �, we let �F be theone generated by nF for all faets Fontaining F. Then

�� = f�F j F is a fae of �g
is the normal fan of �. This gives atori variety X�.
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Example 10.1. Consider the unit squarein MR = R2. The inward normals (notto sale) are:

-
-
6 6�

�? ?

(0;0)

(0;1)

(0;1)

(1;1)

s s

s s

The four verties give four 2-dimones in the normal fan. For example,the vertex (1;1) gives the 2-dim one� ?From here, it is easy to see that we getthe fan of Example 7.5. Thus the torivariety is P1 �P1. 31



Theorem 10.2. The normal tori vari-ety of a fan � in NR ' Rn is projetiveif and only if � is the normal fan of ann-dimensional lattie polytope in MR.We also have a 1-to-1 orrespondene�F 2 �� ! F ��between ones and faes suh thatdim�F +dim F = n:
Let m1; : : : ;m` be the lattie points of�. Then sending (t1; : : : ; tn) 2 (C�)n to��m1(t1; : : : ; tn); : : : ; �m`(t1; : : : ; tn)� 2 P`�1
extends to X� ! P`�1. When � � 0,this map for �� is an embedding. 32



11. Polytopes and HomogeneousCoordinates
Fix a lattie polytope � � MR = Rn.Sine 1-dimensional ones of the normalfan orrespond to faets of �, we get:
�1; : : : ; �r 1-dim ones of normal fanF1; : : : ; Fr faets of lattie polytopex1; : : : ; xr faet variables:

Given a vertex v, the vertex monomial xv̂is the produt of variables whose faetsmiss the v. These generate B, so thatCr n V(B) onsists of points where atleast one vertex monomial is nonzero.33



� gives some interesting monomials inthe oordinate ring. Let� = \i fm 2MR j hm;nii � aigand let D = Pi aiDi. If m 2�\M , thenxm = Yi xhm;nii+aiiis the �-homogenization of �m. For anymonomial xE, deg(xE) = deg(xD) i�xE = xm for some m 2� \M:This gives a 1-to-1 orrespondenebetween monomials of degree deg(xD)and lattie points of �.Now onsider the mapx = (x1; : : : ; xr)! (xm1; : : : ;xm`):34



This map has two properties:� x =2 V(B) implies xmi 6= 0 for some i.� Reall G � (C�)r, so � 2 G gives�x = (�1x1; : : : ; �rxr). Then for eahmi 2� \M ,
(�x)mi = �� xmi;

where �� = �a11 � � ��arr .It follows that we get well-de�ned map
X� = �Cr nV(B)�=G �! P`�1:

If one restrits this map to (C�)n � X�,the result is exatly the map given atthe end of Setion 10. Using (n � 1)�instead of � gives an embedding. 35


