Toric Tutorial

Schedule of Lectures:

- Lecture I: 9-10

What is a Toric Variety?
David Cox

- Lecture II: 10:10-11:10

Toric Ideals, Real Toric Varieties,
the Moment Map, etc.
Frank Sottile

- Lecture III: 11:15-12:15

Lattice Points, Mixed Subdivisions, the BKK Theorem, etc.

Maurice Rojas

Outline of Lecture I:

1. Varieties
2. Toric Varieties
3. Examples
4. Cones
5. Cones and Affine Toric Varieties
6. Normality
7. Fans and Toric Varieties
8. Properties of Toric Varieties
9. Homogeneous Coordinates
10. The Toric Variety of a Polytope
11. Polytopes and Homogeneous

Coordinates

1. Varieties

Most common varieties over \mathbf{C} :

- C^{n} and affine varieties

$$
V=\mathbf{V}\left(f_{1}, \ldots, f_{s}\right) \subset \mathbf{C}^{n}
$$

- \mathbf{P}^{n} and projective varieties

$$
V=\mathbf{V}\left(F_{1}, \ldots, F_{s}\right) \subset \mathbf{P}^{n}
$$

Example 1.1. Let $\mathbf{C}^{*}=\mathbf{C} \backslash\{0\}$. Then $\left(\mathbf{C}^{*}\right)^{n} \subset \mathbf{C}^{n}$ is an affine variety via
$\left(t_{1}, \ldots, t_{n}\right) \mapsto\left(t_{1}, \ldots, t_{n}, 1 / t_{1} \cdots t_{n}\right)$
$\left(\mathbf{C}^{*}\right)^{n} \simeq \mathbf{V}\left(x_{1} x_{2} \cdots x_{n+1}-1\right) \subset \mathbf{C}^{n+1}$.
$\left(\mathbf{C}^{*}\right)^{n}$ is the n-dimensional complex torus and is the "toric" in "toric variety".
$V \backslash W$ is Zariski open in V when $W \subset V$.

Example 1.2. $\left(\mathbf{C}^{*}\right)^{n}=\mathbf{C}^{n} \backslash \mathbf{V}\left(x_{1} \cdots x_{n}\right)$
is Zariski open in \mathbf{C}^{n}.
V is irreducible if it can't be written $V=V_{1} \cup V_{2}$ for $V_{1} \neq V$ and $V_{2} \neq V$.

2. Toric Varieties

Definition 2.1. A toric variety V is irreducible, contains $\left(\mathbf{C}^{*}\right)^{n}$ as a Zariski open subset, and the action of $\left(\mathbf{C}^{*}\right)^{n}$ on itself extends to an action on V.

Example 2.2. \mathbf{C}^{n} and \mathbf{P}^{n} are boric varieties, where $\left(\mathbf{C}^{*}\right)^{n} \subset \mathbf{P}^{n}$ via

$$
\left(t_{1}, \ldots, t_{n}\right) \mapsto\left(1, t_{1}, \ldots, t_{n}\right)
$$

Also:

1. $m \in M=\mathbf{Z}^{n}$ gives the character $\chi^{m}:\left(\mathbf{C}^{*}\right)^{n} \rightarrow \mathbf{C}^{*}$ defined by

$$
\chi^{m}\left(t_{1}, \ldots, t_{n}\right)=t_{1}^{m_{1}} \cdots t_{n}^{m_{n}}
$$

χ^{m} is a Laurent monomial.
2. $u \in N=\mathbf{Z}^{n}$ gives the 1-parameter
subgroup $\lambda^{u}: \mathbf{C}^{*} \rightarrow\left(\mathbf{C}^{*}\right)^{n}$ defined by

$$
\lambda^{u}(t)=\left(t^{u_{1}}, \ldots, t^{u_{n}}\right)
$$

3. $m \in M, u \in N$ give $\langle m, u\rangle=m \cdot u \in \mathbf{Z}$.

3. Examples

Example 3.1. V, W toric \Rightarrow so is $V \times W$.
Example 3.2. $\mathbf{V}\left(y^{2}-x^{3}\right) \subset \mathbf{C}^{2}$ is a toric variety via $t \mapsto\left(t^{2}, t^{3}\right)$. This is nonnormal. The only 1 -dimensional normal toric varieties are $\mathbf{C}^{*}, \mathbf{C}$ and \mathbf{P}^{1}.

Example 3.3. $V=\mathbf{V}(x y-z w) \subset \mathbf{C}^{4}$ is a doric variety via

$$
\left(t_{1}, t_{2}, t_{3}\right) \mapsto\left(t_{1}, t_{2}, t_{3}, t_{1} t_{2} t_{3}^{-1}\right)
$$

Since $x y=z w$ on V, we have

$$
x^{a} y^{b} z^{c}=x^{a} y^{b}\left(\frac{x y}{w}\right)^{c}=x^{a+c} y^{b+c} w^{-c} .
$$

So $\chi^{m}=\chi^{(a, b, c)}$ extends to V if

$$
a \geq 0, b \geq 0, a+c \geq 0, b+c \geq 0 .
$$

Example 3.4. For $\mathbf{P}^{2}, u \in N$ gives a 1-parameter subgroup $\lambda^{u}: \mathbf{C}^{*} \rightarrow \mathbf{P}^{2}$.
What is $\lim _{t \rightarrow 0} \lambda^{u}(t)$? Let $u=(a, b) \in$ $N=\mathbf{Z}^{2}$, so that $\lambda^{u}(t)=\left(1, t^{a}, t^{b}\right)$. Then:

$$
\lim _{t \rightarrow 0} \lambda^{u}(t)= \begin{cases}(1,0,0) & a, b>0 \\ (1,0,1) & a>0, b=0 \\ (1,1,0) & a=0, b>0 \\ (1,1,1) & a=b=0 \\ (0,0,1) & a>b, b<0 \\ (0,1,0) & a<0, a<b \\ (0,1,1) & a<0, a=b\end{cases}
$$

To see how the fifth case works, note $\lim _{t \rightarrow 0}\left(1, t^{a}, t^{b}\right)=\lim _{t \rightarrow 0}\left(t^{-b}, t^{a-b}, 1\right)$. This gives the picture:

4. Cones

Let $N_{\mathbf{R}}=\mathbf{R}^{n}$. A rational polyhedral cone $\sigma \subset N_{\mathbf{R}}$ is:

$$
\sigma=\left\{\lambda_{1} u_{1}+\cdots+\lambda_{\ell} u_{\ell} \mid \lambda_{1}, \ldots, \lambda_{\ell} \geq 0\right\}
$$

where $u_{1}, \ldots, u_{\ell} \in N=\mathbf{Z}^{n}$. Then:

- σ is strongly convex if $\sigma \cap(-\sigma)=\{0\}$.
- $\operatorname{dim} \sigma$ is the dimension of σ.
- A face of σ is $\{\ell=0\} \cap \sigma$, where ℓ is a linear form which is ≥ 0 on σ.
- An edges ρ of σ is a 1-dim face.
- The primitive element n_{ρ} is the unique minimal generator of $\rho \cap N$.
- σ is generated by the n_{ρ} of its edges.
- A facet of σ is a codimension-1 face.

Definition 4.1. A strongly convex rational polyhedral σ has dual cone

$$
\sigma^{\vee}=\left\{m \in M_{\mathbf{R}}=\mathbf{R}^{n} \mid\langle m, u\rangle \geq 0 \forall u \in \sigma\right\}
$$

This is rational polyhedral of $\operatorname{dim} n$.

Elements of N are called lattice points of $N_{\mathbf{R}}$ and elements of M are called lattice points of $M_{\mathbf{R}}$.

Example 4.2. Consider $\sigma \subset N_{\mathbf{R}}=\mathbf{R}^{3}$:

This cone has primitive elements

$$
\begin{aligned}
& n_{1}=(1,0,0), n_{2}=(0,1,0) \\
& n_{3}=(1,0,1), n_{4}=(0,1,1)
\end{aligned}
$$

and inward pointing normals

$$
\begin{aligned}
& m_{1}=(1,0,0), m_{2}=(0,1,0) \\
& m_{3}=(0,0,1), m_{4}=(1,1,-1)
\end{aligned}
$$

These generate the dual cone σ^{\vee} in $M_{\mathbf{R}}$.
Thus $(a, b, c) \in \sigma^{\vee}$ iff

$$
a \geq 0, \quad b \geq 0, a+c \geq 0, b+c \geq 0
$$

In general, the set of linear combinations of characters χ^{m} for $m \in \sigma^{\vee} \cap M$ is

$$
\mathbf{C}\left[\sigma^{\vee} \cap M\right]
$$

This is a ring since $\chi^{m} \cdot \chi^{m^{\prime}}=\chi^{m+m^{\prime}}$.

In terms of Laurent monomials, we have

$$
\mathbf{C}\left[\sigma^{\vee} \cap M\right] \subset \mathbf{C}\left[t_{1}^{ \pm 1}, \ldots, t_{n}^{ \pm 1}\right]
$$

5. Cones and Affine Toric Varieties

A strongly convex rational polyhedral cone $\sigma \subset N_{\mathbf{R}}$ determines the affine boric variety U_{σ} as follows.

By Gordan's Lemma, $\sigma^{\vee} \cap M$ is generate over $\mathbf{Z}_{\geq 0}$ by $m_{1}, \ldots, m_{\ell} \in M$. Map $\left(\mathbf{C}^{*}\right)^{n} \rightarrow \mathbf{C}^{\ell}$ by sending (t_{1}, \ldots, t_{n}) to

$$
\left(\chi^{m_{1}}\left(t_{1}, \ldots, t_{n}\right), \ldots, \chi^{m_{\ell}}\left(t_{1}, \ldots, t_{n}\right)\right) .
$$

Then $U_{\sigma} \subset \mathbf{C}^{\ell}$ is the Zariski closure of the image of this map.

We can think of this is as follows. Let y_{1}, \ldots, y_{ℓ} be variables, and consider
$\mathbf{C}\left[y_{1}, \ldots, y_{\ell}\right] \rightarrow \mathbf{C}\left[\sigma^{\vee} \cap M\right]=\mathbf{C}\left[\chi^{m_{1}}, \ldots, \chi^{m_{\ell}}\right]$
defined by sending y_{i} to $\chi^{m_{i}}$. This map is onto and its kernel $I \subset \mathbf{C}\left[y_{1}, \ldots, y_{\ell}\right]$ consists of all algebraic relations among the $\chi^{m_{i}}$. If $I=\left\langle f_{1}, \ldots, f_{s}\right\rangle$, then

$$
U_{\sigma}=\mathbf{V}\left(f_{1}, \ldots, f_{s}\right) \subset \mathbf{C}^{\ell}
$$

Examples 5.1 and 5.3. For the cone of Example 4.2, the inward normals

$$
\begin{aligned}
& m_{1}=(1,0,0), m_{2}=(0,1,0) \\
& m_{3}=(0,0,1), m_{4}=(1,1,-1)
\end{aligned}
$$

generate $\sigma^{\vee} \cap M$.

Thus $\mathbf{C}\left[\sigma^{\vee} \cap M\right]=\mathbf{C}\left[\chi^{m_{1}}, \chi^{m_{2}}, \chi^{m_{3}}, \chi^{m_{4}}\right]$.
Then $m_{1}+m_{2}=m_{3}+m_{4}$ implies that $x y-z w$ is in the kernel of

$$
\mathbf{C}[x, y, z, w] \rightarrow \mathbf{C}\left[\sigma^{\vee} \cap M\right]
$$

In fact, $x y-z w$ generates the kernel, so

$$
U_{\sigma}=\mathbf{V}(x y-z w) \subset \mathbf{C}^{4}
$$

This is the toric variety of Example 3.3.
In general, $\mathbf{C}\left[\sigma^{\vee} \cap M\right]$ is the coordinate ring of U_{σ}. This is the ring of polynomial functions on the affine variety U_{σ}.

Thus $\mathbf{C}\left[\sigma^{\vee} \cap M\right]$ tells us which characters on $\left(\mathbf{C}^{*}\right)^{n}$ extend to functions defined on all of U_{σ}.

6. Normality

A variety is normal if its local rings are integrally closed in their fields of fractions. The affine variety U_{σ} is normal.

Question: When is an affine toric variety normal?

Example 6.1. Consider

The cone σ

The cone σ^{\vee}

The generators of $\sigma^{\vee} \cap M$ are $m_{i}=(1, i)$
for $i=0, \ldots, 4$.
$U_{\sigma} \subset \mathrm{C}^{5}$ is the Zariski closure of the image of $\left(\mathbf{C}^{*}\right)^{2} \rightarrow \mathbf{C}^{5}$ defined by

$$
(t, u) \mapsto\left(t, t u, t u^{2}, t u^{3}, t u^{4}\right)
$$

What if we omit some of the m_{i} ?

1. m_{0}, m_{4} give $\left(\mathbf{C}^{*}\right)^{2} \rightarrow \mathbf{C}^{2}$ where

$$
(t, u) \mapsto\left(t, t u^{4}\right)
$$

The Zariski closure is \mathbf{C}^{2} but the map is 4-to-1 and m_{0}, m_{4} don't generate \mathbf{Z}^{2}. Messed up the lattice.
2. m_{0}, m_{1}, m_{4} give $\left(\mathbf{C}^{*}\right)^{2} \rightarrow \mathbf{C}^{3}$ where

$$
(t, u) \mapsto\left(t, t u, t u^{4}\right)
$$

The Zariski closure is $x^{3} z=y^{4}$. The map is 1-to- 1 and m_{0}, m_{1}, m_{4} generate \mathbf{Z}^{2}. Not normal since $\operatorname{codim}(\operatorname{sing})=1$.

Let $\sigma \subset N_{\mathbf{R}}=\mathbf{R}^{n}$ be a strongly convex rational polyhedral cone. Given $m_{i} \in$ $\sigma^{\vee} \cap M$ for $i=1, \ldots, \ell$, the $\chi^{m_{i}}$ give

$$
\left(\mathbf{C}^{*}\right)^{n} \longrightarrow \mathbf{C}^{\ell}
$$

Theorem 6.2. The Zariski closure of the image of this map is the normal affine toric variety U_{σ} determined by σ and N if and only if $\sigma^{\vee} \cap M$ is generated over $\mathbf{Z}_{\geq 0}$ by m_{i} for $i=1, \ldots, \ell$.

This shows that an affine toric variety is normal precisely when you use all lattice points in the dual cone.

7. Fans and Toric Varieties

A fan is a finite collection Σ of cones in $N_{\mathbf{R}}$ with the properties:

- Each $\sigma \in \Sigma$ is a strongly convex rational polyhedral cone.
- If $\sigma \in \Sigma$ and τ is a face of σ, then $\tau \in \Sigma$.
- If $\sigma, \tau \in \Sigma$, then $\sigma \cap \tau$ is a face of each. Each $\sigma \in \Sigma$ gives the affine toric variety U_{σ}, and if τ is a face of σ, then U_{τ} is a Zariski open subset of U_{σ}.

Definition 7.1. Given a fan Σ in $N_{\mathbf{R}}$, X_{Σ} is the variety obtained from the affine varieties $U_{\sigma}, \sigma \in \Sigma$, by gluing together U_{σ} and U_{τ} along their common open subset $U_{\sigma \cap \tau}$ for all $\sigma, \tau \in \Sigma$.

Example 7.2. For $\sigma \subset N_{\mathbf{R}}$, we get a fan by taking faces of σ (including σ). The toric variety of this fan is U_{σ}.

Example 7.3. The fan for \mathbf{P}^{1} is:

The cones $\sigma_{1}=[0, \infty)$ and $\sigma_{2}=(-\infty, 0]$ give U_{1} with coordinate ring $\mathbf{C}[t]$ and U_{2} with coordinate ring $\mathbf{C}\left[t^{-1}\right]$, which patch in the usual way to give \mathbf{P}^{1}.

Example 7.4. For a basis e_{1}, \ldots, e_{n} of $N=\mathbf{Z}^{n}$, set $e_{0}=-e_{1}-\cdots-e_{n}$. Then \mathbf{P}^{n} is the doric variety of the fan whose cones are generated by all proper subsets of $\left\{e_{0}, e_{1}, \ldots, e_{n}\right\}$. When $n=2$, this fan appeared in Example 3.4.

Example 7.5. The fan for $\mathbf{P}^{1} \times \mathbf{P}^{1}$ is:

8. Properties of Toric Varieties

There are one-to-one correspondences between the following:

- The limits $\lim _{t \rightarrow 0} \lambda^{u}(t)$ for $u \in|\Sigma|=$

$$
\cup_{\sigma \in \Sigma} \sigma \quad(|\Sigma| \text { is the support of } \Sigma)
$$

- The cones $\sigma \in \Sigma$.
- The orbits of the torus action on X_{Σ}.

The correspondences is as follows:
An orbit corresponds to a cone σ iff $\lim _{t \rightarrow 0} \lambda^{u}(t)$ exists and lies in the orbit for all u in the relative interior of σ.

For an orbit $\operatorname{orb}(\sigma)$, we have:

- $\operatorname{dim} \sigma+\operatorname{dim} \operatorname{orb}(\sigma)=n$.
- $\operatorname{orb}(\sigma) \subset \overline{\operatorname{orb}(\tau)}$ if and only if $\tau \subset \sigma$.

Theorem 8.1. Let X_{Σ} be the toric variety of a fan Σ in $N_{\mathbf{R}}$. Then:

- X_{Σ} is compact $\Leftrightarrow|\Sigma|=N_{\mathbf{R}}$.
- X_{Σ} is smooth \Leftrightarrow all $\sigma \in \Sigma$ are smooth
(generated by a subset of a Z-basis).
- X_{Σ} is simplicial (has finite quotient singularities) \Leftrightarrow all Σ are simplicial (generated by a subset of a Q-basis).

9. Homogeneous Coordinates

Assign a variable to each 1-dimensional cone in the fan of X_{Σ}. Thus:
$\rho_{1}, \ldots, \rho_{r}$ 1-dim cones n_{1}, \ldots, n_{r} primitive generators
D_{1}, \ldots, D_{r} orbit closures in X_{Σ} x_{1}, \ldots, x_{r} variables.

A monomial $\Pi_{i} x_{i}^{a_{i}}$ gives a divisor $D=$ $\sum_{i} a_{i} D_{i}$, so we write $x^{D}=\Pi_{i} x_{i}^{a_{i}}$. Given $x^{E}=\Pi_{i} x_{i}^{b_{i}}$, define $\operatorname{deg}\left(x^{D}\right)=\operatorname{deg}\left(x^{E}\right)$
$\Longleftrightarrow D=E+\operatorname{div}\left(\chi^{m}\right)$ for some $m \in M$
$\Longleftrightarrow a_{i}=b_{i}+\left\langle n_{i}, m\right\rangle$ for some $m \in M$.
This uses $\operatorname{div}\left(\chi^{m}\right)=\sum_{i}\left\langle n_{i}, m\right\rangle D_{i}$
deg $\left(x^{D}\right)$ lies in the Chow group

$$
A_{n-1}\left(X_{\Sigma}\right)=\mathbf{Z}^{r} / \alpha(M)
$$

where $\alpha: M \rightarrow \mathbf{Z}^{r}$ is defined by

$$
\alpha(m)=\left(\left\langle n_{1}, m\right\rangle, \ldots,\left\langle n_{r}, m\right\rangle\right)
$$

Then $\mathbf{C}\left[x_{1}, \ldots, x_{r}\right]$ is the homogeneous coordinate ring of X_{Σ}.

Example 9.1. For \mathbf{P}^{n}, we get the ring $\mathbf{C}\left[x_{0}, \ldots, x_{n}\right]$ with the usual grading.

Example 9.2. For $\mathbf{P}^{1} \times \mathbf{P}^{1}$, we get divisors D_{1}, D_{2} corresponding to the horizontal rays in the fan and divisors D_{3}, D_{4} corresponding to vertical ones. Let the corresponding variables be $x_{1}, x_{2}, x_{3}, x_{4}$.

To grade this, define $\mathbf{Z}^{4} \rightarrow \mathbf{Z}^{2}$ by

$$
\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \mapsto\left(a_{1}+a_{2}, a_{3}+a_{4}\right)
$$

The kernel of this map is the image of α. Hence
$\operatorname{deg}\left(x_{1}^{a_{1}} x_{2}^{a_{2}} x_{3}^{a_{3}} x_{4}^{a_{4}}\right)=\left(a_{1}+a_{2}, a_{3}+a_{4}\right)$.

This is precisely the usual bigrading on $\mathrm{C}\left[x_{1}, x_{2} ; x_{3}, x_{4}\right]$, where each graded piece consists of bihomogeneous polynomials in x_{1}, x_{2} and x_{3}, x_{4}.

To get coordinates, we need an analog of the "irrelevant" ideal $\left\langle x_{0}, \ldots, x_{n}\right\rangle$ for \mathbf{P}^{n}. We do this as follows.

Given $\sigma \in \Sigma$, set

$$
x^{\widehat{\sigma}}=\Pi_{n_{i} \notin \sigma} x_{i}
$$

and $B=\left\langle x^{\hat{\sigma}} \mid \sigma \in \Sigma\right\rangle$. This uses all cones of the fan, while the homogeneous coordinate ring uses only the 1-dim ones.

Also set $G=\operatorname{Hom}_{\mathbf{Z}}\left(A_{n-1}\left(X_{\Sigma}\right), \mathbf{C}^{*}\right)$. This is the kernel of the dual of the map $\left(\mathbf{C}^{*}\right)^{r} \rightarrow\left(\mathbf{C}^{*}\right)^{n}$ induced by α.
$G \subset\left(\mathbf{C}^{*}\right)^{r}$ implies that G acts naturally on \mathbf{C}^{r} and leaves $\mathbf{V}(B)$ invariant. Thus we can form the quotient

$$
\left(\mathbf{C}^{r} \backslash \mathbf{V}(B)\right) / G
$$

Theorem 9.3. Let X_{Σ} be toric variety where $n_{1}, \ldots, n_{\ell} \operatorname{span} N_{\mathbf{R}}$. Then:

1. X_{Σ} is the universal categorical quotient $\left(\mathbf{C}^{r} \backslash \mathbf{V}(B)\right) / G$.
2. $\left(\mathbf{C}^{r} \backslash \mathbf{V}(B)\right) / G$ is a geometric quotient if and only if X_{Σ} is simplicial.

We have $\left(\mathbf{C}^{*}\right)^{n} \simeq\left(\mathbf{C}^{*}\right)^{r} / G$ by definition. Then $\left(\mathbf{C}^{*}\right)^{r} \subset \mathbf{C}^{r}$ induces
$\left(\mathbf{C}^{*}\right)^{n} \simeq\left(\mathbf{C}^{*}\right)^{r} / G \subset\left(\mathbf{C}^{r} \backslash \mathbf{V}(B)\right) / G \simeq X_{\Sigma}$.
Since $\left(\mathbf{C}^{*}\right)^{r}$ acts on $\mathbf{C}^{r} \backslash \mathbf{V}(B),\left(\mathbf{C}^{*}\right)^{n}$ acts on X_{Σ}. And categorical quotients preserve normality, so that the quotient is a normal toric variety.

Example 9.4. For \mathbf{P}^{n}, we get the usual representation $\mathbf{P}^{n} \simeq\left(\mathbf{C}^{n+1} \backslash\{0\}\right) / \mathbf{C}^{*}$.

Example 9.5. For $\mathbf{P}^{1} \times \mathbf{P}^{1}$, we have $B=\left\langle x_{1} x_{3}, x_{1} x_{4}, x_{2} x_{3}, x_{2} x_{4}\right\rangle$. Then

$$
\mathbf{V}(B)=\left(\{0\} \times \mathbf{C}^{2}\right) \cup\left(\mathbf{C}^{2} \times\{0\}\right)
$$

and $G \simeq\left(\mathbf{C}^{*}\right)^{2}$ acts on \mathbf{C}^{4} via
$(\lambda, \mu) \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\lambda x_{1}, \lambda x_{2}, \mu x_{3}, \mu x_{4}\right)$.
Hence the quotient of Theorem 9.3 is

$$
\left(\left(\mathbf{C}^{2} \backslash\{0\}\right) / \mathbf{C}^{*}\right) \times\left(\left(\mathbf{C}^{2} \backslash\{0\}\right) / \mathbf{C}^{*}\right),
$$

which is how one represents $\mathbf{P}^{1} \times \mathbf{P}^{1}$ as a quotient.

Example 9.7. (Simplicial, Not Smooth)
Let $\sigma \subset N_{\mathbf{R}}=\mathbf{R}^{2}$ be generated by $n_{1}=$ $(1,0), n_{2}=(1,2)$. The homogeneous coordinate ring is $\mathbf{C}\left[x_{1}, x_{2}\right]$, where x_{1}, x_{2} have degree $1 \bmod 2$. Furthermore:

1. $U_{\sigma}=V\left(x z-y^{2}\right) \subset \mathbf{C}^{3}$.
2. G acts on \mathbf{C}^{2} by multiplication
by ± 1.
3. The ring of invariants is $\mathrm{C}\left[x_{1}, x_{2}\right]^{G}=$ $\mathrm{C}\left[x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right]$.
4. The quotient $\pi: \mathbf{C}^{2} \rightarrow U_{\sigma}$ is the map $\left(x_{1}, x_{2}\right) \rightarrow\left(x_{1}^{2}, x_{1} x_{2}, x_{2}^{2}\right)$.
Note that $\mathbf{C}^{2} \rightarrow U_{\sigma}$ is 2-to- 1 . This is a a finite quotient singularity.

Example 9.8. (Not Simplicial)
Let σ be the 3-dim cone of Example 3.3.
The ring $\mathbf{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$ is graded by \mathbf{Z}, where the variables have degrees

$$
\begin{aligned}
& \operatorname{deg}\left(x_{1}\right)=\operatorname{deg}\left(x_{4}\right)=1 \\
& \operatorname{deg}\left(x_{2}\right)=\operatorname{deg}\left(x_{3}\right)=-1 .
\end{aligned}
$$

Furthermore:

1. $U_{\sigma}=\mathbf{V}(x y-z w) \subset \mathbf{C}^{4}$.
2. $G=\mathbf{C}^{*}$ acts via $\lambda \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=$

$$
\left(\lambda x_{1}, \lambda^{-1} x_{2}, \lambda^{-1} x_{3}, \lambda x_{4}\right) .
$$

3. The invariant ring is $\mathbf{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]^{G}$

$$
=\mathbf{C}\left[x_{1} x_{2}, x_{3} x_{4}, x_{1} x_{3}, x_{2} x_{4}\right] .
$$

4. The quotient map $\pi: \mathbf{C}^{2} \rightarrow U_{\sigma}$ is

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto\left(x_{1} x_{2}, x_{3} x_{4}, x_{1} x_{3}, x_{2} x_{4}\right) .
$$

If $p \in U_{\sigma}$, then:

- $p \neq 0 \Rightarrow \pi^{-1}(p)$ is a G-orbit.
- $p=0 \Rightarrow \pi^{-1}(p)=(\mathbf{C} \times\{0\} \times\{0\} \times \mathbf{C}) \cup$
$(\{0\} \times \mathbf{C} \times \mathbf{C} \times\{0\})$.
In general, a "categorical quotient" is constructed using the ring of invariants under the group action.

10. The Toric Variety of a Polytope

A lattice polytope Δ in $M_{\mathbf{R}}=\mathbf{R}^{n}$ is the convex hull of a finite subset of M. We represent Δ as an intersection of halfspaces as follows.

For each facet F of Δ, there is an inward normal primitive vector $n_{F} \in N$ and $a_{F} \in$ \mathbf{Z} such that
$\Delta=\bigcap_{F}\left\{m \in M_{\mathbf{R}} \mid\left\langle m, n_{F}\right\rangle \geq-a_{F}\right\}$. F is a facet

Given a face \mathcal{F} of Δ, we let $\sigma_{\mathcal{F}}$ be the cone generated by n_{F} for all facets F containing \mathcal{F}. Then

$$
\Sigma_{\Delta}=\left\{\sigma_{\mathcal{F}} \mid \mathcal{F} \text { is a face of } \Delta\right\}
$$

is the normal fan of Δ. This gives a toric variety X_{Δ}.

Example 10.1. Consider the unit square in $M_{\mathbf{R}}=\mathbf{R}^{2}$. The inward normals (not to scale) are:

The four vertices give four 2-dim cones in the normal fan. For example, the vertex $(1,1)$ gives the 2 -dim cone

From here, it is easy to see that we get the fan of Example 7.5. Thus the toric variety is $\mathbf{P}^{1} \times \mathbf{P}^{1}$.

Theorem 10.2. The normal toric variety of a fan Σ in $N_{\mathbf{R}} \simeq \mathbf{R}^{n}$ is projective if and only if Σ is the normal fan of an n-dimensional lattice polytope in $M_{\mathbf{R}}$.

We also have a 1-to-1 correspondence

$$
\sigma_{\mathcal{F}} \in \Sigma_{\Delta} \longleftrightarrow \mathcal{F} \subset \Delta
$$

between cones and faces such that

$$
\operatorname{dim} \sigma_{\mathcal{F}}+\operatorname{dim} \mathcal{F}=n
$$

Let m_{1}, \ldots, m_{ℓ} be the lattice points of Δ. Then sending $\left(t_{1}, \ldots, t_{n}\right) \in\left(\mathbf{C}^{*}\right)^{n}$ to

$$
\left(\chi^{m_{1}}\left(t_{1}, \ldots, t_{n}\right), \ldots, \chi^{m_{\ell}}\left(t_{1}, \ldots, t_{n}\right)\right) \in \mathbf{P}^{\ell-1}
$$

extends to $X_{\Delta} \rightarrow \mathbf{P}^{\ell-1}$. When $\nu \gg 0$, this map for $\nu \Delta$ is an embedding.

11. Polytopes and Homogeneous Coordinates

Fix a lattice polytope $\Delta \subset M_{\mathbf{R}}=\mathbf{R}^{n}$. Since 1-dimensional cones of the normal fan correspond to facets of Δ, we get:
$\rho_{1}, \ldots, \rho_{r}$ 1-dim cones of normal fan F_{1}, \ldots, F_{r} facets of lattice polytope x_{1}, \ldots, x_{r} facet variables.

Given a vertex v, the vertex monomial $x^{\hat{v}}$ is the product of variables whose facets miss the v. These generate B, so that $\mathbf{C}^{r} \backslash \mathbf{V}(B)$ consists of points where at least one vertex monomial is nonzero.
Δ gives some interesting monomials in the coordinate ring. Let

$$
\Delta=\bigcap_{i}\left\{m \in M_{\mathbf{R}} \mid\left\langle m, n_{i}\right\rangle \geq a_{i}\right\}
$$

and let $D=\sum_{i} a_{i} D_{i}$. If $m \in \Delta \cap M$, then

$$
\mathbf{x}^{m}=\prod_{i} x_{i}^{\left\langle m, n_{i}\right\rangle+a_{i}}
$$

is the Δ-homogenization of χ^{m}. For any monomial $x^{E}, \operatorname{deg}\left(x^{E}\right)=\operatorname{deg}\left(x^{D}\right)$ iff

$$
x^{E}=\mathbf{x}^{m} \text { for some } m \in \Delta \cap M
$$

This gives a 1-to-1 correspondence between monomials of degree $\operatorname{deg}\left(x^{D}\right)$ and lattice points of Δ.

Now consider the map

$$
\mathbf{x}=\left(x_{1}, \ldots, x_{r}\right) \rightarrow\left(\mathbf{x}^{m_{1}}, \ldots, \mathbf{x}^{m_{\ell}}\right)
$$

This map has two properties:

- $\mathbf{x} \notin \mathbf{V}(B)$ implies $\mathbf{x}^{m_{i}} \neq 0$ for some i.
- Recall $G \subset\left(\mathbf{C}^{*}\right)^{r}$, so $\mu \in G$ gives
$\mu \mathbf{x}=\left(\mu_{1} x_{1}, \ldots, \mu_{r} x_{r}\right)$. Then for each $m_{i} \in \Delta \cap M$,

$$
(\mu \mathbf{x})^{m_{i}}=\mu_{\Delta} \mathbf{x}^{m_{i}}
$$

where $\mu_{\Delta}=\mu_{1}^{a_{1}} \cdots \mu_{r}^{a_{r}}$.
It follows that we get well-defined map

$$
X_{\Delta}=\left(\mathbf{C}^{r} \backslash \mathbf{V}(B)\right) / G \longrightarrow \mathbf{P}^{\ell-1}
$$

If one restricts this map to $\left(\mathbf{C}^{*}\right)^{n} \subset X_{\Delta}$, the result is exactly the map given at the end of Section 10. Using $(n-1) \Delta$ instead of Δ gives an embedding.

