Surfaces

I. Curves & Moving Lines II. Surfaces and Moving Quadrics

David A. Cox

Amherst College

Rectangular Case

Consider $a, b, c, d \in R = k[s, t]$, built from monomials $s^i t^j, 0 \le i \le n, 0 \le j \le m$.

Make bihomogeneous of degree (n, m) and assume no basepoints. Get

$$\phi: \mathbb{P}^1 \times \mathbb{P}^1 \longrightarrow \mathbb{P}^3$$

Let $S = \text{image of } \phi$. If ϕ has degree 1, then

$$\deg(\phi)\deg(S) = n^2 - \sum e_p \quad \text{for } \mathbb{P}^2$$

gives $\deg(S) = 2nm$ by Bezout for $\mathbb{P}^1 \times \mathbb{P}^1$.

The Theorem

Theorem (C-Goldman-Zhang): Assume a, b, c, dhave degree (n, m), no basepoints, degree 1, and no moving planes of degree (n - 1, m - 1). Then there are nm moving quadrics of degree (n - 1, m - 1) such that S is defined by

det $\begin{pmatrix} \text{matrix of moving quadrics wrt} \\ \text{monomials deg } (n-1, m-1) \end{pmatrix}$.

The matrix M is $nm \times nm$ and its entries are quadratic in x, y, z, w. So det(M) has deg 2nm.

• Let $I = \langle a, b, c, d \rangle \subset R = k[s, u; t, v].$

Let I = ⟨a, b, c, d⟩ ⊂ R = k[s, u; t, v].
Equations of Rees algebra include mov plane, mov quad, ..., implicit Ignore mov plane; mov quad give implicit.

Let I = ⟨a, b, c, d⟩ ⊂ R = k[s, u; t, v].
Equations of Rees algebra include mov plane, mov quad, ..., implicit Ignore mov plane; mov quad give implicit.
Theorem covers generic case: No basepoints, deg 1, and

$$R^4_{n-1,m-1} \xrightarrow{(a,b,c,d)} R_{2n-1,2m-1}$$

Each has dim 4nm; generically an iso.

- Hong-Simis-Vasconcelos II (Equations of Almost Complete Intersections) considers $\phi : \mathbb{P}^{d-1} \to \mathbb{P}^d$ defined by (a_1, \ldots, a_d, a) , where a_1, \ldots, a_d form a regular sequence.
- Note:
 - Natural hypothesis in no basepoint case.

- Hong-Simis-Vasconcelos II (Equations of Almost Complete Intersections) considers $\phi : \mathbb{P}^{d-1} \to \mathbb{P}^d$ defined by (a_1, \ldots, a_d, a) , where a_1, \ldots, a_d form a regular sequence.
- Note:
 - Natural hypothesis in no basepoint case.
 - a_1, \ldots, a_d reg seq $\iff a_1 = \cdots = a_d$ has no solutions in \mathbb{P}^{d-1} .

- Hong-Simis-Vasconcelos II (Equations of Almost Complete Intersections) considers $\phi : \mathbb{P}^{d-1} \to \mathbb{P}^d$ defined by (a_1, \ldots, a_d, a) , where a_1, \ldots, a_d form a regular sequence.
- Note:
 - Natural hypothesis in no basepoint case.
 - a_1, \ldots, a_d reg seq $\iff a_1 = \cdots = a_d$ has no solutions in \mathbb{P}^{d-1} .
 - Our case is very different!

Our Case

 $\phi: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$ defined by a, b, c, d.

 $\blacksquare a, b, c$ can never be a regular sequence:

 $0 \times \mathbb{A}^2 \cup \mathbb{A}^2 \times \{0\} \subset \mathbf{V}(a, b, c) \subset \mathbb{A}^4.$

Our Case

 $\phi: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$ defined by a, b, c, d.

 $\blacksquare a, b, c$ can never be a regular sequence:

$$0 \times \mathbb{A}^2 \cup \mathbb{A}^2 \times \{0\} \subset \mathbf{V}(a, b, c) \subset \mathbb{A}^4.$$

Replacement: Assume a = b = c = 0 have no solutions in $\mathbb{P}^1 \times \mathbb{P}^1$. The Koszul complex

 $0 \mathop{\rightarrow} R(-3n,-3m) \mathop{\rightarrow} R(-2n,-2m)^3 \mathop{\rightarrow} R(-n,-m)^3 \mathop{\rightarrow} I \mathop{\rightarrow} 0$

is exact up to *B* torsion, $B = \langle st, sv, ut, uv \rangle$ the irrelevant ideal. (Used in multigraded regularity).

Set $\mathcal{O} = \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}$ and sheafify the Koszul complex: $0 \rightarrow \mathcal{O}(-3n, -3m) \rightarrow \mathcal{O}(-2n, -2m)^3 \rightarrow \mathcal{O}(-n, -m)^3 \rightarrow \mathcal{O} \rightarrow 0$ This is exact when a = b = c = 0 have no solutions in $\mathbb{P}^1 \times \mathbb{P}^1$. We will:

• Twist by $\mathcal{O}(\alpha,\beta)$

Set $\mathcal{O} = \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}$ and sheafify the Koszul complex: $0 \rightarrow \mathcal{O}(-3n, -3m) \rightarrow \mathcal{O}(-2n, -2m)^3 \rightarrow \mathcal{O}(-n, -m)^3 \rightarrow \mathcal{O} \rightarrow 0$ This is exact when a = b = c = 0 have no solutions in $\mathbb{P}^1 \times \mathbb{P}^1$. We will:

• Twist by $\mathcal{O}(\alpha,\beta)$

Take cohomology

Set $\mathcal{O} = \mathcal{O}_{\mathbb{P}^1 \times \mathbb{P}^1}$ and sheafify the Koszul complex: $0 \rightarrow \mathcal{O}(\neg 3n, \neg 3m) \rightarrow \mathcal{O}(\neg 2n, \neg 2m)^3 \rightarrow \mathcal{O}(\neg n, \neg m)^3 \rightarrow \mathcal{O} \rightarrow 0$ This is exact when a = b = c = 0 have no solutions in $\mathbb{P}^1 \times \mathbb{P}^1$. We will: • Twist by $\mathcal{O}(\alpha, \beta)$ • Take cohomology

Use vanishing theorems

Moving Quadrics

Moving quadrics = $Syz(I^2)$. Write one as $F = Ax^2 + Bxy + \dots + Jw^2.$ where $A, \ldots, J \in R = k[s, u; t, v]$, so $Aa^2 + Bab + \dots + Jd^2 = 0.$ Note $Syz(a^2, \ldots, d^2)$ is the kernel of $\underbrace{R^{10}_{n-1,m-1}}_{n-1,m-1} \xrightarrow{(a^2,\ldots,d^2)} \underbrace{R_{3n-1,3m-1}}_{n-1,3m-1} \underbrace{R_{3n-1,$ 9nm10nmThus $nm \mod quad \iff this \mod is$ onto.

Regularity?

In the theorem, we assume

$$R^4_{n-1,m-1} \xrightarrow{(a,b,c,d)} R_{2n-1,2m-1}.$$

is onto. This involves multreg(I).

Regularity?

In the theorem, we assume

$$R^4_{n-1,m-1} \xrightarrow{(a,b,c,d)} R_{2n-1,2m-1}.$$

is onto. This involves $\operatorname{multreg}(I)$.

We need to prove

$$R_{n-1,m-1}^{10} \stackrel{(a^2,\ldots,d^2)}{\longrightarrow} R_{3n-1,3m-1}.$$

is onto. This involves $\operatorname{multireg}(I^2)$.

Regularity?

In the theorem, we assume

$$R^4_{n-1,m-1} \xrightarrow{(a,b,c,d)} R_{2n-1,2m-1}.$$

is onto. This involves $\operatorname{multreg}(I)$.

We need to prove

$$R_{n-1,m-1}^{10} \stackrel{(a^2,\ldots,d^2)}{\longrightarrow} R_{3n-1,3m-1}.$$

is onto. This involves multireg(I²).
There is a lot going on here.

Recall Theorem

Theorem: Assume a, b, c, d have degree (n, m), no basepoints, degree 1, and no moving planes of degree (n - 1, m - 1). Then there are nmmoving quadrics of degree (n - 1, m - 1) such that S is defined by

 $det \left(\begin{array}{c} \text{matrix of moving quadrics wrt} \\ \text{monomials deg } (n-1,m-1) \end{array} \right).$

The matrix M is $nm \times nm$ and its entries are quadratic in x, y, z, w. So det(M) has deg 2nm.

• Show $\Phi: R_{n-1,m-1}^{10} \xrightarrow{(a^2,\ldots,d^2)} R_{3n-1,3m-1}$ is onto.

Show $\Phi: R_{n-1,m-1}^{10} \xrightarrow{(a^2,\ldots,d^2)} R_{3n-1,3m-1}$ is onto.

This gives nm mov quad and matrix M. Also note:

- Show $\Phi: R_{n-1,m-1}^{10} \xrightarrow{(a^2,\ldots,d^2)} R_{3n-1,3m-1}$ is onto.
- This gives nm mov quad and matrix M. Also note:

• det(M) has degree 2nm.

- Show $\Phi: R_{n-1,m-1}^{10} \xrightarrow{(a^2,\ldots,d^2)} R_{3n-1,3m-1}$ is onto.
- This gives nm mov quad and matrix M. Also note:
 - det(M) has degree 2nm.
 - The surface S has degree 2nm.

- Show $\Phi: R_{n-1,m-1}^{10} \xrightarrow{(a^2,\ldots,d^2)} R_{3n-1,3m-1}$ is onto.
- This gives nm mov quad and matrix M. Also note:
 - det(M) has degree 2nm.
 - The surface S has degree 2nm.
 - det(M) vanishes on S.

- Show $\Phi: R_{n-1,m-1}^{10} \xrightarrow{(a^2,\ldots,d^2)} R_{3n-1,3m-1}$ is onto.
- This gives nm mov quad and matrix M. Also note:
 - det(M) has degree 2nm.
 - The surface S has degree 2nm.
 - det(M) vanishes on S.
- Show det(M) is not identically zero.

Proof of Onto

Assume a, b, c don't vanish simultaneously. Take the $9nm \times 9nm$ minor of Φ given by a^2, \ldots, cd and assume its kernel is nontrivial. Then:

$$c_1a^2 + \dots + c_9cd = 0$$

for $c_1, \ldots, c_9 \in R_{n-1,m-1}$. Rewrite: $(c_1a + \cdots + c_4d)a + (c_5b + \cdots + c_7d)b + (c_8c + c_9d)c = 0$ Suppose $c_1a + \cdots + c_4d = h_1c + h_2b$ $c_5b + \cdots + c_7d = -h_2a + h_3c$ $c_8c + c_9d = -h_1a - h_3b$ Last line gives mov line deg (n - 1, m - 1)! PASI 2009 - p.12/1

This is how I got involved.

This is how I got involved.
Not exact in our case!

Koszul Complex!

This is how I got involved.

Not exact in our case!

Exact in the degree we need!

Koszul Complex!

- This is how I got involved.
- Not exact in our case!
- **Exact** in the degree we need!
- Twist exact sheaf seq by $\mathcal{O}(3n-1, 3m-1)$:

 $0 {\rightarrow} \, \mathcal{O}(-1,-1) {\rightarrow} \, \mathcal{O}(n-1,m-1) \xrightarrow{3} \mathcal{O}(2n-1,2m-1) \xrightarrow{3} \mathcal{O}(3n-1,2m-1) {\rightarrow} 0$

Koszul Complex!

- This is how I got involved.
- Not exact in our case!
- **Exact** in the degree we need!
- Twist exact sheaf seq by $\mathcal{O}(3n-1, 3m-1)$:

 $0 {\rightarrow} \mathcal{O}(-1, -1) {\rightarrow} \mathcal{O}(n-1, m-1)^{\underline{3}} {\rightarrow} \mathcal{O}(2n-1, 2m-1)^{\underline{3}} {\rightarrow} \mathcal{O}(3n-1, 2m-1) {\rightarrow} 0$

Since $\mathcal{O}(-1, -1)$ has no cohomology,

$$R^3_{n-1,m-1} \to R^3_{2n-1,2m-1} \to R_{3n-1,3m-1}$$

is exact in the middle. Onto is proved!

$\det(M)$ is nonzero

Show its Newton polytope is nonzero.

$\det(M)$ is nonzero

Show its Newton polytope is nonzero.
Use nonvanishing 9nm × 9nm minor to find

 $Q_{ij} = w^2 s^i t^j + \text{terms}$ without w^2

$\det(M)$ is nonzero

Show its Newton polytope is nonzero.
 Use nonvanishing 9nm × 9nm minor to find
 Q_{ij} = w²sⁱt^j + terms without w²

Then

$$\det(M) = \begin{pmatrix} w^2 & * & \cdots & * \\ * & w^2 & \cdots & * \\ \vdots & \vdots & \ddots & \vdots \\ * & * & \cdots & w^2 \end{pmatrix} = w^{2nm} + \cdots$$

The Koszul complex

 $0 \rightarrow R(-3n, -3m) \rightarrow R(-2n, -2m)^3 \rightarrow R(-n, -m)^3 \rightarrow R \rightarrow 0$ is exact up to *B* torsion, $B = \langle st, sv, ut, uv \rangle$.

The Koszul complex

 $0 \rightarrow R(-3n, -3m) \rightarrow R(-2n, -2m)^3 \rightarrow R(-n, -m)^3 \rightarrow R \rightarrow 0$

is exact up to B torsion, $B = \langle st, sv, ut, uv \rangle$.

Behaves like an exact sequence for $H_B^i(-)$.

The Koszul complex

 $0 \rightarrow R(-3n, -3m) \rightarrow R(-2n, -2m)^3 \rightarrow R(-n, -m)^3 \rightarrow R \rightarrow 0$ is exact up to *B* torsion, $B = \langle st, sv, ut, uv \rangle$. Behaves like an exact sequence for $H_B^i(-)$.

Also recall that for i > 0,

 $H_B^{i+1}(R) = \bigoplus_{\alpha,\beta} H^i(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}(\alpha, \beta)).$

The Koszul complex

 $0 \to R(-3n, -3m) \to R(-2n, -2m)^3 \to R(-n, -m)^3 \to R \to 0$

is exact up to B torsion, $B = \langle st, sv, ut, uv \rangle$.

Behaves like an exact sequence for Hⁱ_B(-).
Also recall that for i > 0,

 $H^{i+1}_B(R) = \bigoplus_{\alpha,\beta} H^i(\mathbb{P}^1 \times \mathbb{P}^1, \mathcal{O}(\alpha, \beta)).$

For a more sophisticated approach, see Botbol's lecture next Thursday.

Postscript

Craig Huneke made two useful comments:

The local cohomology $H_B^i(R)$ is computed by Mayer-Vietoris since $\mathbf{V}(B)$ is union to two coord. planes meeting transverseley in \mathbb{A}^4 .

Since we assume $I_{2n-1,2m-1} = R_{2n-1,2m-1}$ and I^2 is gen. by $I_{n,m}I_{n,m}$, onto follows from

$$I_{3n-1,3m-1}^{2} = I_{n,m}I_{2n-1,2m-1} = I_{n,m}R_{2n-1,2m-1}$$
$$= I_{n,m}R_{n-1,m-1}R_{n,m} = I_{2n-1,2m-1}R_{n,m}$$
$$= R_{2n-1,2m-1}E_{n,m} = R_{3n-1,3m-1}$$

Need the special $9nm \times 9nm$ minor for $det(M) \neq 0$.