Surfaces

I. Curves \& Moving Lines
 II. Surfaces and Moving Quadrics

David A. Cox

Amherst College

Rectangular Case

Consider $a, b, c, d \in R=k[s, t]$, built from monomials $s^{i} t^{j}, 0 \leq i \leq n, 0 \leq j \leq m$.

Make bihomogeneous of degree (n, m) and assume no basepoints. Get

$$
\phi: \mathbb{P}^{1} \times \mathbb{P}^{1} \longrightarrow \mathbb{P}^{3}
$$

Let $S=$ image of ϕ. If ϕ has degree 1 , then

$$
\operatorname{deg}(\phi) \operatorname{deg}(S)=n^{2}-\sum e_{p} \quad \text { for } \mathbb{P}^{2}
$$

gives $\operatorname{deg}(S)=2 n m$ by Bezout for $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

The Theorem

Theorem (C-Goldman-Zhang): Assume a, b, c, d have degree (n, m), no basepoints, degree 1 , and no moving planes of degree $(n-1, m-1)$. Then there are $n m$ moving quadrics of degree ($n-1, m-1$) such that S is defined by

$$
\operatorname{det}\binom{\text { matrix of moving quadrics wrt }}{\text { monomials deg }(n-1, m-1)}
$$

The matrix M is $n m \times n m$ and its entries are quadratic in x, y, z, w. So $\operatorname{det}(M)$ has deg $2 n m$.

Comments

$$
\text { Let } I=\langle a, b, c, d\rangle \subset R=k[s, u ; t, v] \text {. }
$$

Comments

■ Let $I=\langle a, b, c, d\rangle \subset R=k[s, u ; t, v]$.
■ Equations of Rees algebra include mov plane, mov quad, ... , implicit

Ignore mov plane; mov quad give implicit.

Comments

■ Let $I=\langle a, b, c, d\rangle \subset R=k[s, u ; t, v]$.

- Equations of Rees algebra include mov plane, mov quad, ... , implicit

Ignore mov plane; mov quad give implicit.

- Theorem covers generic case:

No basepoints, deg 1, and

$$
R_{n-1, m-1}^{4} \xrightarrow{(a, b, c, d)} R_{2 n-1,2 m-1}
$$

Each has dim $4 n m$; generically an iso.

Comments

■ Hong-Simis-Vasconcelos II (Equations of Almost Complete Intersections) considers $\phi: \mathbb{P}^{d-1} \rightarrow \mathbb{P}^{d}$ defined by $\left(a_{1}, \ldots, a_{d}, a\right)$, where a_{1}, \ldots, a_{d} form a regular sequence.

- Note:

■ Natural hypothesis in no basepoint case.

Comments

■ Hong-Simis-Vasconcelos II (Equations of Almost Complete Intersections) considers $\phi: \mathbb{P}^{d-1} \rightarrow \mathbb{P}^{d}$ defined by $\left(a_{1}, \ldots, a_{d}, a\right)$, where a_{1}, \ldots, a_{d} form a regular sequence.

- Note:

■ Natural hypothesis in no basepoint case.
$\square a_{1}, \ldots, a_{d}$ reg seq $\Longleftrightarrow a_{1}=\cdots=a_{d}$ has no solutions in \mathbb{P}^{d-1}.

Comments

■ Hong-Simis-Vasconcelos II (Equations of Almost Complete Intersections) considers $\phi: \mathbb{P}^{d-1} \rightarrow \mathbb{P}^{d}$ defined by $\left(a_{1}, \ldots, a_{d}, a\right)$, where a_{1}, \ldots, a_{d} form a regular sequence.
■ Note:
■ Natural hypothesis in no basepoint case.
$\square a_{1}, \ldots, a_{d}$ reg seq $\Longleftrightarrow a_{1}=\cdots=a_{d}$ has no solutions in \mathbb{P}^{d-1}.

- Our case is very different!

Our Case

$\phi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ defined by a, b, c, d.
$\square a, b, c$ can never be a regular sequence:

$$
0 \times \mathbb{A}^{2} \cup \mathbb{A}^{2} \times\{0\} \subset \mathbf{V}(a, b, c) \subset \mathbb{A}^{4}
$$

Our Case

$\phi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ defined by a, b, c, d.

- a, b, c can never be a regular sequence:

$$
0 \times \mathbb{A}^{2} \cup \mathbb{A}^{2} \times\{0\} \subset \mathbf{V}(a, b, c) \subset \mathbb{A}^{4}
$$

- Replacement: Assume $a=b=c=0$ have no solutions in $\mathbb{P}^{1} \times \mathbb{P}^{1}$. The Koszul complex

$$
0 \rightarrow R(-3 n,-3 m) \rightarrow R(-2 n,-2 m)^{3} \rightarrow R(-n,-m)^{3} \rightarrow I \rightarrow 0
$$

is exact up to B torsion, $B=\langle s t, s v, u t, u v\rangle$ the irrelevant ideal. (Used in multigraded regularity).

Sheafify

Set $\mathcal{O}=\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}$ and sheafify the Koszul complex:

$$
0 \rightarrow \mathcal{O}(-3 n,-3 m) \rightarrow \mathcal{O}(-2 n,-2 m)^{3} \rightarrow \mathcal{O}(-n,-m)^{3} \rightarrow \mathcal{O} \rightarrow 0
$$

This is exact when $a=b=c=0$ have no solutions in $\mathbb{P}^{1} \times \mathbb{P}^{1}$. We will:
■ Twist by $\mathcal{O}(\alpha, \beta)$

Sheafify

Set $\mathcal{O}=\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}$ and sheafify the Koszul complex:

$$
0 \rightarrow \mathcal{O}(-3 n,-3 m) \rightarrow \mathcal{O}(-2 n,-2 m)^{3} \rightarrow \mathcal{O}(-n,-m)^{3} \rightarrow \mathcal{O} \rightarrow 0
$$

This is exact when $a=b=c=0$ have no solutions in $\mathbb{P}^{1} \times \mathbb{P}^{1}$. We will:

- Twist by $\mathcal{O}(\alpha, \beta)$
- Take cohomology

Sheafify

Set $\mathcal{O}=\mathcal{O}_{\mathbb{P}^{1} \times \mathbb{P}^{1}}$ and sheafify the Koszul complex:

$$
0 \rightarrow \mathcal{O}(-3 n,-3 m) \rightarrow \mathcal{O}(-2 n,-2 m)^{3} \rightarrow \mathcal{O}(-n,-m)^{3} \rightarrow \mathcal{O} \rightarrow 0
$$

This is exact when $a=b=c=0$ have no solutions in $\mathbb{P}^{1} \times \mathbb{P}^{1}$. We will:

- Twist by $\mathcal{O}(\alpha, \beta)$
- Take cohomology

■ Use vanishing theorems

Moving Quadrics

Moving quadrics $=\operatorname{Syz}\left(I^{2}\right)$. Write one as

$$
F=A x^{2}+B x y+\cdots+J w^{2} .
$$

where $A, \ldots, J \in R=k[s, u ; t, v]$, so

$$
A a^{2}+B a b+\cdots+J d^{2}=0
$$

Note $\operatorname{Syz}\left(a^{2}, \ldots, d^{2}\right)$ is the kernel of

$$
\underbrace{R_{n-1, m-1}^{10}}_{10 n m} \stackrel{\left(a^{2}, \ldots, d^{2}\right)}{\longrightarrow} \underbrace{R_{3 n-1,3 m-1}}_{9 n m}
$$

Thus $n m$ mov quad \Longleftrightarrow this map is onto.

Regularity?

- In the theorem, we assume

$$
R_{n-1, m-1}^{4} \xrightarrow{(a, b, c, d)} R_{2 n-1,2 m-1} .
$$

is onto. This involves multreg (I).

Regularity?

■ In the theorem, we assume

$$
R_{n-1, m-1}^{4} \xrightarrow{(a, b, c, d)} R_{2 n-1,2 m-1} .
$$

is onto. This involves multreg (I).
■ We need to prove

$$
R_{n-1, m-1}^{10} \stackrel{\left(a^{2}, \ldots, d^{2}\right)}{\longrightarrow} R_{3 n-1,3 m-1}
$$

is onto. This involves multireg $\left(I^{2}\right)$.

Regularity?

■ In the theorem, we assume

$$
R_{n-1, m-1}^{4} \xrightarrow{(a, b, c, d)} R_{2 n-1,2 m-1} .
$$

is onto. This involves multreg (I).
■ We need to prove

$$
R_{n-1, m-1}^{10} \xrightarrow{\left(a^{2}, \ldots, d^{2}\right)} R_{3 n-1,3 m-1} .
$$

is onto. This involves multireg $\left(I^{2}\right)$.

- There is a lot going on here.

Recall Theorem

Theorem: Assume a, b, c, d have degree (n, m), no basepoints, degree 1, and no moving planes of degree $(n-1, m-1)$. Then there are $n m$ moving quadrics of degree ($n-1, m-1$) such that S is defined by

$$
\operatorname{det}\binom{\text { matrix of moving quadrics wrt }}{\text { monomials deg }(n-1, m-1)}
$$

The matrix M is $n m \times n m$ and its entries are quadratic in x, y, z, w. So $\operatorname{det}(M)$ has deg $2 n m$.

Proof Strategy

■ Show $\Phi: R_{n-1, m-1}^{10} \xrightarrow{\left(a^{2}, \ldots, d^{2}\right)} R_{3 n-1,3 m-1}$ is onto.

Proof Strategy

■ Show $\Phi: R_{n-1, m-1}^{10} \xrightarrow{\left(a^{2}, \ldots, d^{2}\right)} R_{3 n-1,3 m-1}$ is onto.

- This gives $n m$ mov quad and matrix M. Also note:

Proof Strategy

■ Show $\Phi: R_{n-1, m-1}^{10} \xrightarrow{\left(a^{2}, \ldots, d^{2}\right)} R_{3 n-1,3 m-1}$ is onto.

- This gives $n m$ mov quad and matrix M. Also note:
- $\operatorname{det}(M)$ has degree $2 n m$.

Proof Strategy

■ Show $\Phi: R_{n-1, m-1}^{10} \xrightarrow{\left(a^{2}, \ldots, d^{2}\right)} R_{3 n-1,3 m-1}$ is onto.

- This gives $n m$ mov quad and matrix M. Also note:
- $\operatorname{det}(M)$ has degree $2 n m$.
- The surface S has degree 2 nm .

Proof Strategy

■ Show $\Phi: R_{n-1, m-1}^{10} \xrightarrow{\left(a^{2}, \ldots, d^{2}\right)} R_{3 n-1,3 m-1}$ is onto.

- This gives $n m$ mov quad and matrix M. Also note:
- $\operatorname{det}(M)$ has degree $2 n m$.
- The surface S has degree 2 nm .
- $\operatorname{det}(M)$ vanishes on S.

Proof Strategy

■ Show $\Phi: R_{n-1, m-1}^{10} \xrightarrow{\left(a^{2}, \ldots, d^{2}\right)} R_{3 n-1,3 m-1}$ is onto.

- This gives $n m$ mov quad and matrix M. Also note:
- $\operatorname{det}(M)$ has degree $2 n m$.
- The surface S has degree 2 nm .
- $\operatorname{det}(M)$ vanishes on S.
\square Show $\operatorname{det}(M)$ is not identically zero.

Proof of Onto

Assume a, b, c don't vanish simultaneously. Take the $9 n m \times 9 n m$ minor of Φ given by $a^{2}, \ldots, c d$ and assume its kernel is nontrivial. Then:

$$
c_{1} a^{2}+\cdots+c_{9} c d=0
$$

for $c_{1}, \ldots, c_{9} \in R_{n-1, m-1}$. Rewrite:
$\left(c_{1} a+\cdots+c_{4} d\right) a+\left(c_{5} b+\cdots+c_{7} d\right) b+\left(c_{8} c+c_{9} d\right) c=0$
Suppose $c_{1} a+\cdots+c_{4} d=h_{1} c+h_{2} b$

$$
\begin{aligned}
c_{5} b+\cdots+c_{7} d & =-h_{2} a+h_{3} c \\
c_{8} c+c_{9} d & =-h_{1} a-h_{3} b
\end{aligned}
$$

Last line gives mov line deg $(n-1, m-1)$!

Koszul Complex!

- This is how I got involved.

Koszul Complex!

- This is how I got involved.

■ Not exact in our case!

Koszul Complex!

- This is how I got involved.

■ Not exact in our case!
■ Exact in the degree we need!

Koszul Complex!

- This is how I got involved.

■ Not exact in our case!

- Exact in the degree we need!
- Twist exact sheaf seq by $\mathcal{O}(3 n-1,3 m-1)$:
$0 \rightarrow \mathcal{O}(-1,-1) \rightarrow \mathcal{O}(n-1, m-1)^{3} \rightarrow \mathcal{O}(2 n-1,2 m-1)^{3} \rightarrow \mathcal{O}(3 n-1,2 m-1) \rightarrow 0$

Koszul Complex!

- This is how I got involved.

■ Not exact in our case!

- Exact in the degree we need!

■ Twist exact sheaf seq by $\mathcal{O}(3 n-1,3 m-1)$:
$0 \rightarrow \mathcal{O}(-1,-1) \rightarrow \mathcal{O}(n-1, m-1)^{3} \rightarrow \mathcal{O}(2 n-1,2 m-1)^{3} \rightarrow \mathcal{O}(3 n-1,2 m-1) \rightarrow 0$
■ Since $\mathcal{O}(-1,-1)$ has no cohomology,

$$
R_{n-1, m-1}^{3} \rightarrow R_{2 n-1,2 m-1}^{3} \rightarrow R_{3 n-1,3 m-1}
$$

is exact in the middle. Onto is proved!

$\operatorname{det}(M)$ is nonzero

■ Show its Newton polytope is nonzero.

$\operatorname{det}(M)$ is nonzero

■ Show its Newton polytope is nonzero.
$■$ Use nonvanishing $9 n m \times 9 n m$ minor to find

$$
Q_{i j}=w^{2} s^{i} t^{j}+\text { terms without } w^{2}
$$

$\operatorname{det}(M)$ is nonzero

- Show its Newton polytope is nonzero.

■ Use nonvanishing $9 \mathrm{~nm} \times 9 \mathrm{~nm}$ minor to find

$$
Q_{i j}=w^{2} s^{i} t^{j}+\text { terms without } w^{2}
$$

- Then

$$
\operatorname{det}(M)=\left(\begin{array}{cccc}
w^{2} & * & \cdots & * \\
* & w^{2} & \cdots & * \\
\vdots & \vdots & \ddots & \vdots \\
* & * & \cdots & w^{2}
\end{array}\right)=w^{2 n m}+\cdots
$$

Final Comments

- The Koszul complex

$0 \rightarrow R(-3 n,-3 m) \rightarrow R(-2 n,-2 m)^{3} \rightarrow R(-n,-m)^{3} \rightarrow R \rightarrow 0$ is exact up to B torsion, $B=\langle s t, s v, u t, u v\rangle$.

Final Comments

- The Koszul complex

$0 \rightarrow R(-3 n,-3 m) \rightarrow R(-2 n,-2 m)^{3} \rightarrow R(-n,-m)^{3} \rightarrow R \rightarrow 0$ is exact up to B torsion, $B=\langle s t, s v, u t, u v\rangle$.
■ Behaves like an exact sequence for $H_{B}^{i}(-)$.

Final Comments

- The Koszul complex

$0 \rightarrow R(-3 n,-3 m) \rightarrow R(-2 n,-2 m)^{3} \rightarrow R(-n,-m)^{3} \rightarrow R \rightarrow 0$ is exact up to B torsion, $B=\langle s t, s v, u t, u v\rangle$.

- Behaves like an exact sequence for $H_{B}^{i}(-)$.
- Also recall that for $i>0$,

$$
H_{B}^{i+1}(R)=\bigoplus_{\alpha, \beta} H^{i}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(\alpha, \beta)\right)
$$

Final Comments

- The Koszul complex
$0 \rightarrow R(-3 n,-3 m) \rightarrow R(-2 n,-2 m)^{3} \rightarrow R(-n,-m)^{3} \rightarrow R \rightarrow 0$ is exact up to B torsion, $B=\langle s t, s v, u t, u v\rangle$.
- Behaves like an exact sequence for $H_{B}^{i}(-)$.
- Also recall that for $i>0$,

$$
H_{B}^{i+1}(R)=\bigoplus_{\alpha, \beta} H^{i}\left(\mathbb{P}^{1} \times \mathbb{P}^{1}, \mathcal{O}(\alpha, \beta)\right)
$$

- For a more sophisticated approach, see Botbol's lecture next Thursday.

Postscript

Craig Huneke made two useful comments:

- The local cohomology $H_{B}^{i}(R)$ is computed by Mayer-Vietoris since $\mathbf{V}(B)$ is union to two coord. planes meeting transverseley in \mathbb{A}^{4}.
- Since we assume $I_{2 n-1,2 m-1}=R_{2 n-1,2 m-1}$ and I^{2} is gen. by $I_{n, m} I_{n, m}$, onto follows from

$$
\begin{aligned}
I_{3 n-1,3 m-1}^{2} & =I_{n, m} I_{2 n-1,2 m-1}=I_{n, m} R_{2 n-1,2 m-1} \\
& =I_{n, m} R_{n-1, m-1} R_{n, m}=I_{2 n-1,2 m-1} R_{n, m} \\
& =R_{2 n-1,2 m-1} E_{n, m}=R_{3 n-1,3 m-1}
\end{aligned}
$$

Need the special $9 n m \times 9 n m$ minor for $\operatorname{det}(M)^{2} \neq 00^{16}$

