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Curve Implicitization

Turn a parametrization into an equation.

m Affine : Turn

into F'(x,y) = 0.



Curve Implicitization

Turn a parametrization into an equation.

m Affine : Turn

into F'(x,y) = 0.
m Projective : Turn
r=ua(s,t), y=>b(s,t), z=c(st)
into F'(x,y,z) = 0.
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Moving Lines

= A moving line Is an eqguation
A(s,t)x + B(s,t)y + C(s,t)z = 0.
= A moving line follows a parametrization
r=ua(s,t), y=>b(st), z=c(st)

if (a(s,t),b(s,t),c(s,t)) lies on the line
A(s,t)x + B(s,t)y + C(s,t)z = 0 for all s, ¢.

m |[f two moving lines follow a parametrization,
their intersection is the parametrization.



Moving Line Picture

Here are two moving lines for an ellipse:
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Moving Line Picture

Here are two moving lines for an ellipse:

N\

Together they define the ellipse:

This construction is due Steiner in 1832.
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u-Bases

Theorem: a,b,c € k|s,t| homogeneous, deg = n,
ged(a, b, c) = 1. There exist moving lines p, g with:

1. Every moving line can be uniquely written
up + vq,

where v and v are homogeneous of degree
m — deg(p) and m — deg(q).

2. deg(p) + deg(q) = n.



u-Bases

Theorem: a,b,c € k|s,t| homogeneous, deg = n,
ged(a, b, c) = 1. There exist moving lines p, g with:

1. Every moving line can be uniquely written
up + vq,

where v and v are homogeneous of degree
m — deg(p) and m — deg(q).

2. deg(p) + deg(q) = n.

Definition : p, g are a u-basis when

p = deg(p) < deg(q) =n — p.



Proof

Let R = k|s,t]and I = (a,b,c) C R.

The Hilbert Syzygy Theorem and a Hilbert
polynomial computation give a free resolution

0 — Rl-n—p)®R(2n+pu) — R(=n)* "9 1 0.

The kernel of (a, b, ¢) is Syz(a, b, ¢). It consists of
all triples (A, B, C) € R? such that

Aa+ Bb+ Ce = 0.

These give the moving lines Az + By + Cz
that follow the curve. QED ... ..
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Some History

m 1832 — Steiner describes conic sections using
moving lines.

m 1887 — Meyer describes the syzygies of
a,b,c € kl|s,t] and makes a conjecture for the
syzygies of ay, ..., a,,.

m 1890 — Hilbert proves the Syzygy Theorem
and proves Meyer’s conjecture.

m 1995 — Sederberg and Chen interpret moving
lines in terms of syzygies.
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= A polynomial
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Moving Curves

Moving lines are not the full story. Let R = k|s, t].
= A polynomial
F = Z’i—l—j—l—l:m Aijl(87 t) xzyjzl < R[CE, Y, Z]

Is called a moving curve of degree m.
= A moving curve follows our parametrization if

Zi—|—j—|—l:m Aiji at/cd =0in R

m The moving curve ideal MC C Rlz,y, z] IS
generated by these moving curves.



The Rees Algebra

I ={a,b,c) C R = k|s,t] has Rees algebra
Rl =@ I'e" C Rle].

Rees algebras are important in commutative
algebra.



The Rees Algebra

I ={a,b,c) C R = k|s,t] has Rees algebra

R[] = @, I'e’ C Rle].

Rees algebras are important in commutative
algebra.

The map (x,y, z) — (ae, be, ce) gives a surjection

The kernel is MC. Thus the moving curve ideal
gives the defining relations of the Rees algebra!



Example 1

a = 6s°t° — 4tt, b =45t — 4st?, ¢ = "

The moving curve ideal has five generators:
e Two moving lines of degree 2 in s, t:
p=stx+ (387 —t?)y — 2st 2
qg=s’r—sty—2t*z
e TWo moving conics of degree 1 In s, ¢:
sxy —ty? —2taxz — syz + 4t 22
sx® —taxy + %sgﬂ — 251z +1tyz
e The implicit equation:
Yt + 42z + 22y r — 162227 — 6y%2° + 16227
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Example 1 Picture

Here Is the curve of Example 1.




Compute Example 1

To generate M, begin with the moving lines:
p=stx+ (387 —t?)y — 2st 2
q=s’xy—sty—2°z

e 5,t° give
p = (tx + tsy — 2tz)s + (—y)t?

q = (s —ty)s + (—22)t°
The Sylvester form Is
ot (tx +isy — 2tz —y )
ST — 1y —2z

This Is the first moving conic generator of M ('



Compute Example 1

e 52, t give the second moving conic generator!
e 5.t and the moving conic generators give
(xy — yz)s + (42° — y* — 2z2)t
(2?2 + 3y — 2x2)s + (yz — ay)t
The Sylvester form Is
Ty — Yz 422 —y? — 22z
det ( 2 | 1.9 )
v+ Sy° — 2x2 Yz — TY
This Is the implicit equation!
e The implicit equation is also Res(p, q).



Example 2

a =35t — 3522, b= 3522 —3st®, ¢ = (s> + 1)

The moving curve ideal has five generators:
e Two moving lines of degree 1,3 In s, t:
p=txr— Sy
q = s°x+ (25°t + 7))y + (3st? — 35°t)z2
o One moving conic of degree 2 In s, t:
‘4 (23 + t%)y? + (3st — 3s° )yz
o One moving cubic of degree 1 In s, ¢:
sxd +2sxy® +ty’ — 3sayz + 3sy*z
e The implicit equation:
vt 4+ 222y 4+ yt — 32%yz + 3xy’z



Example 2 Picture

Here Is the curve of Example 2:




Compute Example 2

To generate M, begin with the moving lines:
p=txr— Sy
q=s°x+ (25t + 13y + (3st* — 3s%t)z
e The moving lines give
p=(—y)s+ ()t
q = (5°z)s + ((25° + %)y + (3st — 3s%)2)t
The Sylvester form Is

det — ‘
s*r (2s% + %)y + (3st — 3s%)z
This Is —1 times the moving conic generator!



Compute Example 2

e p =tz — sy and the moving conic give

det ) ) )
sx® + 2sy” — 3syz ty° + 3syz

This is —1 times the moving cubic generator!
e p = tx — sy and the moving cubic give

det ( —J a:)
z° 4 2zy* — 3xyz + 3y P
This Is —1 times Is the implicit equation!
e The implicit equation is also Res(p, q).



Theorems

There are theorems that explain these examples,
plus results on parametrized curves in P".

Some of the people involved:

C_

C-, Hoffman, and Wang

Busé

Hoon, Simis, and Vasconcelos
Kustin, Polini, and Ulrich
Cortadellas Benitez and D’Andrea
Goldman, Jia, and Wang

| will explain some of this tomorrow.



Rational Plane
Curves

Theorem: If C c P? is defined by an irreducible
equation of degree n, then C'Is rational <—

(n—1)(n—2) = Zpyp(Vp — 1),
where the sum is over all singular points p of C

and v, Is the multiplicity of C at p.

Classical Proof : We will use adjoint curves. A
curve D of degree m Is adjoint to C' If:

e At all singular points p of C' with multiplicity v,,
the curve D has multiplicity at least v, — 1.



The Classical Proof

Lemma: Form € {n —1,n — 2}, 3a 1-dim linear
system of plane curves whose general member

D Is adjoint to C' and meets C' In
mn — (n — 1)(n — 2) — 1 fixed smooth points of C.

Consequences
e By Bezout, mn =D -C =} (v, — 1)y, +
mn — (n—1)(n —2) — 1 4+ one more point.
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The Classical Proof

Lemma: Form € {n —1,n — 2}, 3a 1-dim linear
system of plane curves whose general member

D Is adjoint to C' and meets C' In
mn — (n — 1)(n — 2) — 1 fixed smooth points of C.

Consequences

e By Bezout, mn =D -C =} (v, — 1)y, +
mn — (n—1)(n —2) — 1 4+ one more point.

e This moving point gives a parametrization!

e Linear system =- the curve Is rational! QED

Also: we get the parametrization by a resultant.



Consider the affine curve defined by
F(z,y) = y* + 42° + 229* — 162* — 63> + 162 = 0.

Note (4 — 1)(4 — 2) = 3[sing pts] - 2 [mult] - (2 — 1).
To parametrize, use the linear system of conics

Gsi(T,y) = sz° — twy + 1sy” — 2sx + ty = 0.

These adjoint curves all go through the origin.

Observation: G Is one of our moving conics!



Picture

n.
lllllllllllllllllllllll

These conics go through the singular points and
the origin, plus one more point that moves.
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The Parametrization

Compute the resultants:
Res(F, G,y) = z(x — 1)z — 2)*(s*x — 6t*s* + 4t%)
Res(F, G, z) = y°(y* — 2)*(sy — 4ts® + 4t°)

The constant factors show that G = 0 goes
through the origin and the singular points of
F' = 0. The other factors give

6522 — 4¢4 453t — 4st3

T = y:
st ’

g4

This is an affine version of our original
parametrization of ' = 0!



Theorem

Theorem : Given a proper parametrization of
degree n, there are elements of the moving
curve ideal M C of degree one in s,t and degree
n—1lorn—2Iinx,y, z can be chosen to be
adjoint linear systems on the rational curve
defined by the parametrization.

e Proof by Busé; i = 1 by C-, Hoffman, Wang.
e Theorem based on an observation of Sendra.

e Moving lines: small deqg z, v, z, large deg s, t.
Adjoint curves: large deg z,y, z, small deg s, ¢.



Surfaces

Example : The Steiner surface is given by

- a(s,t) 2st
YT dst) s21e+1
o b(s,t) 2t
ST A ) St
(s, t) 25
° d(s,t) s2+t2+1



Surfaces

b3y o _ a(s,t) _ 2st

1 d(s,t) s2+t2+1
- b(s,t) 2t

0,75 ST At S
(s, t) 25

T d(st) S+
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Boeing 777

EMOTORBOOKS COLORTECH

Bill Yenne
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Boeing 777

AMOTORBOOKS COLORTECH

1" The Boeing 777 was
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surface patches.

Bill Yenne
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Guggenheim Bilbao
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Gehry Sketch
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ao Close-Up
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Commutative
Algebra

Affine Case : A moving plane
Ax+ By+Cz+ D=0, A B,C,D € kl|s,t]

follows a, b, c,d Iff Aa + Bb+ Cc+ Dd = 0. Thus
moving planes live in the syzygy module

Syz(a,b,c,d) C ks, t]*.
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Commutative
Algebra

Affine Case : A moving plane
Ax+ By+Cz+ D=0, A B,C,D € kl|s,t]

follows a, b, c,d Iff Aa + Bb+ Cc+ Dd = 0. Thus
moving planes live in the syzygy module

Syz(a,b,c,d) C ks, t]*.

Theorem : The syzygy module Syz(a, b, c,d) is a
free k|s, t|-module of rank 3.

Proof : Auslander-Buchsbaum & Quillen-Suslin!



Commutative
Algebra

Projective Case : More complicated!
e [ ={a,bc,d C R=k[s,t,u/ homogeneous
e ¢ : P? ——5 P rational map

e Basepoints V(a, b, c,d) C P?

e S =image C P’ parametrized surface

o deg ¢ - deg S = n? — 2 6

e ¢, = Hilbert-Samuel Multiplicity



Projective Case

The following are equivalent:
e Syz(a,b,c,d) is free

e pd(R/I) =2

e /I is Cohen-Macaulay

e / IS saturated.

Example : Cubic surface in P has a, b, ¢, d deg 3:
e Syz(a, b, c,d). 3 moving planes deg 1 in s, ¢, u.
e Basepoints: Six.

Also : No basepoints = Syz(a, b, ¢, d) not free.



The Bihomogeneous
Case

Geometric Modeling often uses rectangular
surfaces patches, built from polynomials in s, ¢
whose Newton polygon is a rectangle.

This leads naturally to a parametrization
¢ : P! x Pt — P?

(assuming no basepoints), where ¢ Is given by
bihomogeneous polynomials of bidegree (n,m).

Bigraded commutative algebra is very different!
| will give an example on Thursday.
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The Affine Case

A basis of Syz(a, b, c,d) over ks, t] is a pu-basis.
Write the u-basis as

p=Ax+By+Cz+D =0
g=Az+By+C'2+D

|
-




The Affine Case

A basis of Syz(a, b, c,d) over ks, t] is a pu-basis.

Write the u-basis as
p=Ax+By+Cz+D =0
g=Az+By+Cz+D
r=A"z+B"y+C"2+ D" = 0

|
-

By Cramer, a, b, ¢, d are the 3 x3 minors of

(p\ (A B C D)
q — A/ B/ Cl D/
\,r/ \A// B// C// D///




Resultant of a
1-Basls

For surfaces, the resultant of an affine p-basis
almost gives the implicit equation.



Resultant of a
1-Basls

For surfaces, the resultant of an affine p-basis
almost gives the implicit equation.

Analysis : At a point (x,y, z) where
Res(p, q,r) =0,
the equations

p=Ax+By+Cz+D =0
g=Ax+By+C'2+D
r=A"r+B"'y+C"2+D" = 0

|
-

have a solution s, t (possibly at oo).



No Basepoints

()\ (A B C D)
q — A/ B/ C/ D/

\T/ \A// B// C// D///
has rank 3 since a, b, ¢, d are the 3 x 3 minors. So

no basepoints = the moving planes always have
a unigue point of intersection!




Basepoints

At a basepoint, the parameter values “blow up” to
an exceptional curve on the surface. These
curves come in three flavors:

= A line.
= A plane curve.

m A space curve.
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Basepoints

At a basepoint, the parameter values “blow up” to
an exceptional curve on the surface. These
curves come in three flavors:

= A line.
= A plane curve.

= A space curve.
These cases correspond to the rank of

)\ (A B C D)
gl=A B C D |.
\T / \ A" B! C// D" /




Rank 2 Basepoints

Here, the moving planes intersect in a line:

1
Furthermore: exceptional curve

= The resultant Res(p, ¢, ) vanishes exactly on
the surface, at least for s, ¢ finite.

m A basepoint has rank two <= itis LCI!

2009 — p.39

141



Rank 1 Basepoints

Here, the moving planes coincide:

exceptional curve
Furthermore:

m The resultant Res(p, ¢, ) has an extraneous
factor = the equation of the plane to the
power e, — d,, d, = dimy O, /{a, b, ¢, d).

m A basepoint has rank one <= (a,b,c,d) IS
almost LCI.



Rank O Basepoints

Here, the moving “planes” are the ambient
space, since we have a space curve. Thus:

m The resultant Res(p, ¢, ) vanishes identically.

m A basepoint has rank zero < locally
(a, b, c, d) requires four generators.

Hence
Res(p, q,7)
requires a truly bad basepoint before it vanishes!
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