Topics in Curve and Surface Implicitization

David A. Cox

Amherst College
Outline

Curves:

- Moving Lines & μ-Bases
- Moving Curve Ideal & the Rees Algebra
- Adjoint Curves
Outline

Curves:
- Moving Lines & μ-Bases
- Moving Curve Ideal & the Rees Algebra
- Adjoint Curves

Surfaces:
- Parametrized Surfaces
- Moving Planes & Syzygies
- Affine, Projective & Bihomogeneous
- The Resultant of a μ-Basis
Curve Implicitization

Turn a *parametrization* into an *equation*.

- **Affine**: Turn

\[
x = \frac{a(t)}{c(t)}, \quad y = \frac{b(t)}{c(t)}
\]

into \(F(x, y) = 0 \).
Curve Implicitization

Turn a *parametrization* into an *equation*.

■ **Affine**: Turn

\[x = \frac{a(t)}{c(t)}, \quad y = \frac{b(t)}{c(t)} \]

into \(F(x, y) = 0 \).

■ **Projective**: Turn

\[x = a(s, t), \quad y = b(s, t), \quad z = c(s, t) \]

into \(F(x, y, z) = 0 \).
Moving Lines

A *moving line* is an equation

\[A(s, t)x + B(s, t)y + C(s, t)z = 0. \]
Moving Lines

- A *moving line* is an equation

\[A(s, t)x + B(s, t)y + C(s, t)z = 0. \]

- A moving line *follows* a parametrization

\[x = a(s, t), \quad y = b(s, t), \quad z = c(s, t) \]

if \((a(s, t), b(s, t), c(s, t))\) lies on the line \(A(s, t)x + B(s, t)y + C(s, t)z = 0\) for all \(s, t\).
A moving line is an equation
\[A(s, t)x + B(s, t)y + C(s, t)z = 0. \]

A moving line follows a parametrization
\[x = a(s, t), \quad y = b(s, t), \quad z = c(s, t) \]
if \((a(s, t), b(s, t), c(s, t))\) lies on the line
\[A(s, t)x + B(s, t)y + C(s, t)z = 0 \]
for all \(s, t\).

If two moving lines follow a parametrization, their intersection is the parametrization.
Moving Line Picture

Here are two moving lines for an ellipse:
Moving Line Picture

Here are two moving lines for an ellipse:
Here are two moving lines for an ellipse:

Together they \textit{define} the ellipse:
Here are two moving lines for an ellipse:

Together they *define* the *ellipse*:
Here are two moving lines for an ellipse:

Together they *define* the *ellipse*:

This construction is due Steiner in 1832.
Theorem: \(a, b, c \in k[s, t] \) homogeneous, \(\deg = n \), \(\gcd(a, b, c) = 1 \). There exist moving lines \(p, q \) with:

1. Every moving line can be uniquely written as
 \[up + vq, \]
 where \(u \) and \(v \) are homogeneous of degree \(m - \deg(p) \) and \(m - \deg(q) \).

2. \(\deg(p) + \deg(q) = n \).
Theorem: \(a, b, c \in k[s, t] \) homogeneous, \(\deg = n \), \(\gcd(a, b, c) = 1 \). There exist moving lines \(p, q \) with:

1. Every moving line can be uniquely written \(up + vq \), where \(u \) and \(v \) are homogeneous of degree \(m - \deg(p) \) and \(m - \deg(q) \).

2. \(\deg(p) + \deg(q) = n \).

Definition: \(p, q \) are a \(\mu \)-basis when \(\mu = \deg(p) \leq \deg(q) = n - \mu \).
Proof

Let \(R = k[s, t] \) and \(I = \langle a, b, c \rangle \subset R \).

The *Hilbert Syzygy Theorem* and a *Hilbert polynomial* computation give a free resolution

\[
0 \rightarrow R(-n - \mu) \oplus R(-2n + \mu) \rightarrow R(-n)^3 \xrightarrow{(a,b,c)} I \rightarrow 0.
\]

The kernel of \((a, b, c)\) is \(\text{Syz}(a, b, c)\). It consists of all triples \((A, B, C)\) \(\in R^3\) such that

\[
Aa + Bb + Cc = 0.
\]

These give the moving lines \(Ax + By + Cz\) that follow the curve.

QED
Some History

- 1832 – Steiner describes conic sections using moving lines.
Some History

- **1832** – Steiner describes conic sections using moving lines.

- **1887** – Meyer describes the syzygies of $a, b, c \in k[s, t]$ and makes a conjecture for the syzygies of a_1, \ldots, a_m.
Some History

- **1832** – Steiner describes conic sections using moving lines.
- **1887** – Meyer describes the syzygies of $a, b, c \in k[s, t]$ and makes a conjecture for the syzygies of a_1, \ldots, a_m.
- **1890** – Hilbert proves the Syzygy Theorem and proves Meyer’s conjecture.
Some History

- **1832** – Steiner describes conic sections using moving lines.
- **1887** – Meyer describes the syzygies of $a, b, c \in k[s, t]$ and makes a conjecture for the syzygies of a_1, \ldots, a_m.
- **1890** – Hilbert proves the Syzygy Theorem and proves Meyer’s conjecture.
- **1995** – Sederberg and Chen interpret moving lines in terms of syzygies.
Moving Curves

Moving lines are not the full story. Let $R = k[s, t]$.

A polynomial

$$F = \sum_{i+j+l=m} A_{ijl}(s, t) x^i y^j z^l \in R[x, y, z]$$

is called a *moving curve* of degree m.
Moving Curves

Moving lines are not the full story. Let $R = k[s, t]$.

- A polynomial

$$F = \sum_{i+j+l=m} A_{ijl}(s, t) x^i y^j z^l \in R[x, y, z]$$

is called a moving curve of degree m.

- A moving curve follows our parametrization if

$$\sum_{i+j+l=m} A_{ijl} a^i b^j c^l \equiv 0 \text{ in } R$$
Moving Curves

Moving lines are not the full story. Let $R = k[s, t]$.

- A polynomial

$$F = \sum_{i+j+l=m} A_{ijl}(s, t) \ x^i y^j z^l \in R[x, y, z]$$

is called a moving curve of degree m.

- A moving curve follows our parametrization if

$$\sum_{i+j+l=m} A_{ijl} \ a^i b^j c^l \equiv 0 \ in \ R$$

- The moving curve ideal $MC \subset R[x, y, z]$ is generated by these moving curves.
The Rees Algebra

$I = \langle a, b, c \rangle \subset R = k[s, t]$ has Rees algebra

$$R[I] = \bigoplus_{i=0}^{\infty} I^i e^i \subset R[e].$$

Rees algebras are important in commutative algebra.
The Rees Algebra

\[I = \langle a, b, c \rangle \subset R = k[s, t] \text{ has Rees algebra} \]

\[R[I] = \bigoplus_{i=0}^{\infty} I^i e^i \subset R[e]. \]

Rees algebras are important in commutative algebra.

The map \((x, y, z) \mapsto (ae, be, ce)\) gives a surjection

\[R[x, y, z] \longrightarrow R[I]. \]

The kernel is \(MC\). Thus the moving curve ideal gives the defining relations of the Rees algebra!
Example 1

\[a = 6s^2t^2 - 4t^4, \quad b = 4s^3t - 4st^3, \quad c = s^4 \]

The moving curve ideal has five generators:

- Two moving lines of degree 2 in \(s, t \):
 \[p = stx + \left(\frac{1}{2}s^2 - t^2\right)y - 2stz \]
 \[q = s^2x - sty - 2t^2z \]

- Two moving conics of degree 1 in \(s, t \):
 \[sxy - ty^2 - 2txz - syz + 4tz^2 \]
 \[s\ x^2 - txy + \frac{1}{2}sy^2 - 2sxz + tyz \]

- The implicit equation:
 \[y^4 + 4x^3z + 2xy^2z - 16x^2z^2 - 6y^2z^2 + 16xz^3 \]
Example 1 Picture

Here is the curve of Example 1:
Compute Example 1

To generate MC, begin with the moving lines:

\[p = st x + \left(\frac{1}{2} s^2 - t^2 \right) y - 2st z \]
\[q = s^2 x - st y - 2t^2 z \]

- s, t^2 give

\[p = (tx + \frac{1}{2} sy - 2tz) s + (-y)t^2 \]
\[q = (sx - ty) s + (-2z)t^2 \]

The **Sylvester form** is

\[
\det \begin{pmatrix}
 tx + \frac{1}{2} sy - 2tz & -y \\
 sx - ty & -2z
\end{pmatrix}
\]

This is the first moving conic generator of MC!
Compute Example 1

- \(s^2, t \) give the second moving conic generator!
- \(s, t \) and the moving conic generators give
 \[
 (xy - yz)s + (4z^2 - y^2 - 2xz)t \\
 (x^2 + \frac{1}{2}y^2 - 2xz)s + (yz - xy)t
 \]
 The Sylvester form is
 \[
 \det \begin{pmatrix}
 xy - yz & 4z^2 - y^2 - 2xz \\
 x^2 + \frac{1}{2}y^2 - 2xz & yz - xy
 \end{pmatrix}
 \]
 This is the implicit equation!
- The implicit equation is also \(\text{Res}(p, q) \).
Example 2

\[a = 3s^3t - 3s^2t^2, \quad b = 3s^2t^2 - 3st^3, \quad c = (s^2 + t^2)^2 \]

The moving curve ideal has five generators:

- **Two moving lines** of degree 1,3 in \(s, t \):
 \[p = tx - sy \]
 \[q = s^3x + (2s^2t + t^3)y + (3st^2 - 3s^2t)z \]

- **One moving conic** of degree 2 in \(s, t \):
 \[s^2x^2 + (2s^2 + t^2)y^2 + (3st - 3s^2)yz \]

- **One moving cubic** of degree 1 in \(s, t \):
 \[sx^3 + 2sxy^2 + ty^3 - 3sxyz + 3sy^2z \]

- **The implicit equation**:
 \[x^4 + 2x^2y^2 + y^4 - 3x^2yz + 3xy^2z \]
Example 2 Picture

Here is the curve of Example 2:
Compute Example 2

To generate MC, begin with the moving lines:

\[p = tx - sy \]
\[q = s^3 x + (2s^2 t + t^3)y + (3st^2 - 3s^2t)z \]

- The moving lines give
 \[p = (-y)s + (x)t \]
 \[q = (s^2 x)s + ((2s^2 + t^2)y + (3st - 3s^2)z)t \]

The Sylvester form is

\[\det \begin{pmatrix} -y & x \\ s^2 x & (2s^2 + t^2)y + (3st - 3s^2)z \end{pmatrix} \]

This is -1 times the moving conic generator!
Compute Example 2

- \(p = tx - sy \) and the moving conic give

\[
\begin{vmatrix}
-tx^2 + 2sy^2 - 3xyz & ty^2 + 3sy^2 \\
-sx^2 + 2sy^2 - 3xyz & tx^2 + 3sy^2 \\
\end{vmatrix}
\]

This is \(-1\) times the moving cubic generator!

- \(p = tx - sy \) and the moving cubic give

\[
\begin{vmatrix}
-tx^2 + 2sy^2 - 3xyz + 3y^2z & ty^2 + 3sy^2 \\
-sx^2 + 2sy^2 - 3xyz + 3y^2z & tx^2 + 3sy^2 \\
\end{vmatrix}
\]

This is \(-1\) times is the implicit equation!

- The implicit equation is also \(\text{Res}(p, q) \).
Theorems

There are theorems that explain these examples, plus results on parametrized curves in \mathbb{P}^n.

Some of the people involved:

C-
C-, Hoffman, and Wang
Busé
Hoon, Simis, and Vasconcelos
Kustin, Polini, and Ulrich
Cortadellas Benítez and D’Andrea
Goldman, Jia, and Wang

I will explain some of this tomorrow.
Rational Plane Curves

Theorem: If $C \subset \mathbb{P}^2$ is defined by an irreducible equation of degree n, then C is rational \iff

$$(n - 1)(n - 2) = \sum_p \nu_p(\nu_p - 1),$$

where the sum is over all singular points p of C and ν_p is the multiplicity of C at p.

Classical Proof: We will use *adjoint curves*. A curve D of degree m is *adjoint* to C if:

- At all singular points p of C with multiplicity ν_p, the curve D has multiplicity at least $\nu_p - 1$.
The Classical Proof

Lemma: For \(m \in \{n - 1, n - 2\} \), \(\exists \) a 1-dim linear system of plane curves whose general member \(D \) is adjoint to \(C \) and meets \(C \) in \(mn - (n - 1)(n - 2) - 1 \) fixed smooth points of \(C \).

Consequences:
- By Bezout, \(mn = D \cdot C = \sum_p (\nu_p - 1)\nu_p + mn - (n - 1)(n - 2) - 1 + \) one more point.
The Classical Proof

Lemma: For \(m \in \{n - 1, n - 2\} \), \(\exists \) a 1-dim linear system of plane curves whose general member \(D \) is adjoint to \(C \) and meets \(C \) in
\[
mn - (n - 1)(n - 2) - 1 \text{ fixed smooth points of } C.
\]

Consequences:

- By Bezout,

 \[
 mn = D \cdot C = \sum_p (\nu_p - 1)\nu_p +
 mn - (n - 1)(n - 2) - 1 + \text{ one more point.}
 \]

- This moving point gives a parametrization!
The Classical Proof

Lemma: For $m \in \{n - 1, n - 2\}$, \exists a 1-dim linear system of plane curves whose general member D is adjoint to C and meets C in $mn - (n - 1)(n - 2) - 1$ fixed smooth points of C.

Consequences:

- By Bezout, $mn = D \cdot C = \sum_p (\nu_p - 1)\nu_p + mn - (n - 1)(n - 2) - 1 +$ one more point.
- This moving point gives a parametrization!
- Linear system \Rightarrow the curve is rational! QED
The Classical Proof

Lemma: For \(m \in \{n - 1, n - 2\} \), \(\exists \) a 1-dim linear system of plane curves whose general member \(D \) is adjoint to \(C \) and meets \(C \) in

\[
mn - (n - 1)(n - 2) - 1 \text{ fixed smooth points of } C.
\]

Consequences:

- By Bezout, \(mn = D \cdot C = \sum_p (\nu_p - 1)\nu_p + \)
 \[
mn - (n - 1)(n - 2) - 1 + \text{ one more point.}
\]
- This moving point gives a parametrization!
- Linear system \(\Rightarrow \) the curve is rational! QED

Also: we get the parametrization by a resultant.
Example

Consider the affine curve defined by

\[F(x, y) = y^4 + 4x^3 + 2xy^2 - 16x^2 - 6y^2 + 16x = 0. \]

Note \((4 - 1)(4 - 2) = 3 \text{ [sing pts]} \cdot 2 \text{ [mult]} \cdot (2 - 1)\).

To parametrize, use the linear system of conics

\[G_{s,t}(x, y) = sx^2 - txy + \frac{1}{2}sy^2 - 2sx + ty = 0. \]

These adjoint curves all go through the origin.

Observation: \(G\) is one of our moving conics!
These conics go through the singular points and the origin, plus one more point that moves.
The Parametrization

Compute the resultants:

\[
\text{Res}(F, G, y) = x(x - 1)^4(x - 2)^2(s^4x - 6t^2s^2 + 4t^4)
\]

\[
\text{Res}(F, G, x) = y^3(y^2 - 2)^2(s^3y - 4ts^2 + 4t^3)
\]

The constant factors show that \(G = 0 \) goes through the origin and the singular points of \(F = 0 \). The other factors give

\[
x = \frac{6s^2t^2 - 4t^4}{s^4}, \quad y = \frac{4s^3t - 4st^3}{s^4}.
\]

This is an affine version of our original parametrization of \(F = 0 \)!
Theorem: Given a proper parametrization of degree n, there are elements of the moving curve ideal MC of degree one in s, t and degree $n - 1$ or $n - 2$ in x, y, z can be chosen to be *adjoint linear systems* on the rational curve defined by the parametrization.

- Proof by Busé; $\mu = 1$ by C-, Hoffman, Wang.
- Theorem based on an observation of Sendra.
- Moving lines: small deg x, y, z, large deg s, t.
 Adjoint curves: large deg x, y, z, small deg s, t.

PASI 2009 – p.25/41
Example: The Steiner surface is given by

\[
\begin{align*}
x &= \frac{a(s, t)}{d(s, t)} = \frac{2st}{s^2 + t^2 + 1} \\
y &= \frac{b(s, t)}{d(s, t)} = \frac{2t}{s^2 + t^2 + 1} \\
z &= \frac{c(s, t)}{d(s, t)} = \frac{2s}{s^2 + t^2 + 1}
\end{align*}
\]
Surfaces

Example: The Steiner surface is given by

\[x = \frac{a(s, t)}{d(s, t)} = \frac{2st}{s^2 + t^2 + 1} \]
\[y = \frac{b(s, t)}{d(s, t)} = \frac{2t}{s^2 + t^2 + 1} \]
\[z = \frac{c(s, t)}{d(s, t)} = \frac{2s}{s^2 + t^2 + 1} \]
Boeing 777
Boeing 777

The Boeing 777 was designed using 50 million surface patches.
Guggenheim Bilbao
Gehry Sketch
Bilbao Close-Up
Affine Case: A moving plane

\[Ax + By + Cz + D = 0, \quad A, B, C, D \in k[s, t] \]

follows \(a, b, c, d \) iff \(Aa + Bb + Cc + Dd = 0 \). Thus moving planes live in the syzygy module

\[\text{Syz}(a, b, c, d) \subseteq k[s, t]^4. \]
Affine Case: A moving plane

\[Ax + By + Cz + D = 0, \quad A, B, C, D \in k[s, t] \]

follows \(a, b, c, d \) iff \(Aa + Bb + Cc + Dd = 0 \). Thus moving planes live in the syzygy module

\[\text{Syz}(a, b, c, d) \subset k[s, t]^4. \]

Theorem: The syzygy module \(\text{Syz}(a, b, c, d) \) is a free \(k[s, t] \)-module of rank 3.
Affine Case: A moving plane

\[Ax + By + Cz + D = 0, \quad A, B, C, D \in k[s, t] \]

follows \(a, b, c, d \) iff \(Aa + Bb + Cc + Dd = 0 \). Thus moving planes live in the syzygy module

\[\text{Syz}(a, b, c, d) \subset k[s, t]^4. \]

Theorem: The syzygy module \(\text{Syz}(a, b, c, d) \) is a free \(k[s, t] \)-module of rank 3.

Proof: Auslander-Buchsbaum & Quillen-Suslin!
Projective Case: More complicated!

- \(I = \langle a, b, c, d \rangle \subset R = k[s, t, u] \) homogeneous
- \(\phi : \mathbb{P}^2 \dashrightarrow \mathbb{P}^3 \) rational map
- **Basepoints** \(V(a, b, c, d) \subset \mathbb{P}^2 \)
- \(S = \text{image} \subset \mathbb{P}^3 \) parametrized surface
- \(\deg \phi \cdot \deg S = n^2 - \sum_p e_p \)
- \(e_p = \text{Hilbert-Samuel Multiplicity} \)
Projective Case

The following are equivalent:

- \(\text{Syz}(a, b, c, d) \) is free
- \(\text{pd}(R/I) = 2 \)
- \(R/I \) is Cohen-Macaulay
- \(I \) is saturated.

Example: Cubic surface in \(\mathbb{P}^3 \) has \(a, b, c, d \) deg 3:

- \(\text{Syz}(a, b, c, d) \): 3 moving planes deg 1 in \(s, t, u \).
- Basepoints: Six.

Also: No basepoints \(\Rightarrow \) \(\text{Syz}(a, b, c, d) \) not free.
The Bihomogeneous Case

Geometric Modeling often uses *rectangular* surfaces patches, built from polynomials in s, t whose Newton polygon is a rectangle.

This leads naturally to a parametrization

$$\phi : \mathbb{P}^1 \times \mathbb{P}^1 \rightarrow \mathbb{P}^3$$

(assuming no basepoints), where ϕ is given by *bihomogeneous* polynomials of bidegree (n, m).

Bigraded commutative algebra is *very different*!

I will give an example on Thursday.
The Affine Case

A basis of $\text{Syz}(a, b, c, d)$ over $k[s, t]$ is a μ-basis.
The Affine Case

A basis of $\text{Syz}(a, b, c, d)$ over $k[s, t]$ is a μ-basis.

Write the μ-basis as

\[
\begin{align*}
p &= A \, x + B \, y + C \, z + D &= 0 \\
q &= A' \, x + B' \, y + C' \, z + D' &= 0 \\
r &= A'' \, x + B'' \, y + C'' \, z + D'' &= 0
\end{align*}
\]
The Affine Case

A basis of $\text{Syz}(a, b, c, d)$ over $k[s, t]$ is a μ-basis.

Write the μ-basis as

\[
\begin{align*}
p &= Ax + By + Cz + D = 0 \\
q &= A'x + B'y + C'z + D' = 0 \\
r &= A''x + B''y + C''z + D'' = 0
\end{align*}
\]

By Cramer, a, b, c, d are the 3×3 minors of

\[
\begin{pmatrix}
p \\ q \\ r
\end{pmatrix} = \begin{pmatrix}
A & B & C & D \\
A' & B' & C' & D' \\
A'' & B'' & C'' & D''
\end{pmatrix}
\]
Resultant of a μ-Basis

For surfaces, the resultant of an affine μ-basis *almost* gives the implicit equation.
Resultant of a μ-Basis

For surfaces, the resultant of an affine μ-basis *almost* gives the implicit equation.

Analysis: At a point (x, y, z) where

$$\text{Res}(p, q, r) = 0,$$

the equations

\[
\begin{align*}
p &= Ax + By + Cz + D = 0 \\
q &= A'x + B'y + C'z + D' = 0 \\
r &= A''x + B''y + C''z + D'' = 0
\end{align*}
\]

have a solution s, t (possibly at ∞).
No Basepoints

\[
\begin{pmatrix}
p \\
q \\
r
\end{pmatrix}
= \begin{pmatrix}
A & B & C & D \\
A' & B' & C' & D' \\
A'' & B'' & C'' & D''
\end{pmatrix}
\]

has rank 3 since \(a, b, c, d\) are the \(3 \times 3\) minors. So no basepoints \(\Rightarrow\) the moving planes always have a unique point of intersection!
Basepoints

At a basepoint, the parameter values “blow up” to an exceptional curve on the surface. These curves come in three flavors:

- A line.
- A plane curve.
- A space curve.
Basepoints

At a basepoint, the parameter values “blow up” to an exceptional curve on the surface. These curves come in three flavors:

- A line.
- A plane curve.
- A space curve.

These cases correspond to the rank of

\[
\begin{pmatrix}
p \\ q \\ r
\end{pmatrix} = \begin{pmatrix}
A & B & C & D \\
A' & B' & C' & D' \\
A'' & B'' & C'' & D''
\end{pmatrix}.
\]
Rank 2 Basepoints

Here, the moving planes intersect in a line:

\[q = 0 \]
\[p = 0 \]
\[r = 0 \]

Furthermore:

- The resultant \(\text{Res}(p, q, r) \) vanishes exactly on the surface, at least for \(s, t \) finite.
- A basepoint has rank two \(\iff \) it is LCI!
Rank 1 Basepoints

Here, the moving planes coincide:

Furthermore:

- The resultant $\text{Res}(p, q, r)$ has an extraneous factor $= \text{the equation of the plane to the power } e_p - d_p$, $d_p = \dim_k \mathcal{O}_p/\langle a, b, c, d \rangle$.

- A basepoint has rank one $\iff \langle a, b, c, d \rangle$ is almost LCI.
Rank 0 Basepoints

Here, the moving “planes” are the ambient space, since we have a space curve. Thus:

- The resultant $\text{Res}(p, q, r)$ vanishes identically.
- A basepoint has rank zero \iff locally $\langle a, b, c, d \rangle$ requires four generators.

Hence

$$\text{Res}(p, q, r)$$

requires a truly bad basepoint before it vanishes!