

Outline

Curves:

- Moving Lines & µ-Bases
- Moving Curve Ideal & the Rees Algebra
- Adjoint Curves

Outline

Curves:

- Moving Lines & µ-Bases
- Moving Curve Ideal & the Rees Algebra
- Adjoint Curves

Surfaces:

- Parametrized Surfaces
- Moving Planes & Syzygies
- Affine, Projective & Bihomogeneous
- The Resultant of a μ -Basis

Curve Implicitization

Turn a *parametrization* into an *equation*.

Affine: Turn

$$x = \frac{a(t)}{c(t)}, \quad y = \frac{b(t)}{c(t)}$$

into F(x, y) = 0.

Curve Implicitization

Turn a *parametrization* into an *equation*.

Affine: Turn

$$x = \frac{a(t)}{c(t)}, \quad y = \frac{b(t)}{c(t)}$$

into F(x, y) = 0.

Projective: Turn

$$x = a(s,t), y = b(s,t), z = c(s,t)$$

into $F(x,y,z) = 0.$

PASI 2009 - p.3/41

Moving Lines

A moving line is an equation

A(s,t)x + B(s,t)y + C(s,t)z = 0.

Moving Lines

A moving line is an equation A(s,t)x + B(s,t)y + C(s,t)z = 0.A moving line follows a parametrization $x = a(s,t), \quad y = b(s,t), \quad z = c(s,t)$ if (a(s,t), b(s,t), c(s,t)) lies on the line A(s,t)x + B(s,t)y + C(s,t)z = 0 for all s, t.

Moving Lines

A moving line is an equation

A(s,t)x + B(s,t)y + C(s,t)z = 0.

A moving line follows a parametrization

x = a(s,t), y = b(s,t), z = c(s,t)

if (a(s,t), b(s,t), c(s,t)) lies on the line

A(s,t)x + B(s,t)y + C(s,t)z = 0 for all s, t.

If two moving lines follow a parametrization, their intersection is the parametrization.

Here are two moving lines for an ellipse:

Here are two moving lines for an ellipse:

Here are two moving lines for an ellipse:

Together they *define* the ellipse:

Here are two moving lines for an ellipse:

Together they *define* the ellipse:

Here are two moving lines for an ellipse:

Together they *define* the ellipse:

This construction is due Steiner in 1832.

Theorem: $a, b, c \in k[s, t]$ homogeneous, deg = n, gcd(a, b, c) = 1. There exist moving lines p, q with: 1. Every moving line can be uniquely written

up + vq,

where u and v are homogeneous of degree $m - \deg(p)$ and $m - \deg(q)$.

2. $\deg(p) + \deg(q) = n$.

Theorem: $a, b, c \in k[s, t]$ homogeneous, deg = n, gcd(a, b, c) = 1. There exist moving lines p, q with: 1. Every moving line can be uniquely written

up + vq,

where u and v are homogeneous of degree $m - \deg(p)$ and $m - \deg(q)$.

2. $\deg(p) + \deg(q) = n$.

Definition: p, q are a μ -basis when

 $\mu = \deg(p) \le \deg(q) = n - \mu.$

PASI 2009 - p.6/41

Proof

Let R = k[s, t] and $I = \langle a, b, c \rangle \subset R$.

The *Hilbert Syzygy Theorem* and a *Hilbert polynomial* computation give a free resolution

 $0 \to R(-n-\mu) \oplus R(-2n+\mu) \to R(-n)^3 \xrightarrow{(a,b,c)} I \to 0.$

The kernel of (a, b, c) is Syz(a, b, c). It consists of all triples $(A, B, C) \in R^3$ such that

Aa + Bb + Cc = 0.

These give the moving lines Ax + By + Czthat follow the curve. QED

1832 – Steiner describes conic sections using moving lines.

Some History

- 1832 Steiner describes conic sections using moving lines.
- 1887 Meyer describes the syzygies of $a, b, c \in k[s, t]$ and makes a conjecture for the syzygies of a_1, \ldots, a_m .

Some History

- 1832 Steiner describes conic sections using moving lines.
- 1887 Meyer describes the syzygies of $a, b, c \in k[s, t]$ and makes a conjecture for the syzygies of a_1, \ldots, a_m .
- 1890 Hilbert proves the Syzygy Theorem and proves Meyer's conjecture.

Some History

- 1832 Steiner describes conic sections using moving lines.
- 1887 Meyer describes the syzygies of $a, b, c \in k[s, t]$ and makes a conjecture for the syzygies of a_1, \ldots, a_m .
- 1890 Hilbert proves the Syzygy Theorem and proves Meyer's conjecture.
- 1995 Sederberg and Chen interpret moving lines in terms of syzygies.

Moving Curves

Moving lines are not the full story. Let R = k[s, t]. • A polynomial

$$F = \sum_{i+j+l=m} A_{ijl}(s,t) x^i y^j z^l \in R[x,y,z]$$

is called a *moving curve* of degree m.

Moving Curves

Moving lines are not the full story. Let R = k[s, t]. • A polynomial

$$F = \sum_{i+j+l=m} A_{ijl}(s,t) x^i y^j z^l \in R[x,y,z]$$

is called a *moving curve* of degree m.

A moving curve follows our parametrization if

$$\sum_{i+j+l=m} A_{ijl} a^i b^j c^l \equiv 0$$
 in R

Moving Curves

Moving lines are not the full story. Let R = k[s, t]. • A polynomial

$$F = \sum_{i+j+l=m} A_{ijl}(s,t) x^i y^j z^l \in R[x,y,z]$$

is called a *moving curve* of degree m.

A moving curve follows our parametrization if

$$\sum_{i+j+l=m} A_{ijl} a^i b^j c^l \equiv 0$$
 in R

The moving curve ideal $MC \subset R[x, y, z]$ is generated by these moving curves.

The Rees Algebra

$$I = \langle a, b, c \rangle \subset R = k[s, t]$$
 has Rees algebra
 $R[I] = \bigoplus_{i=0}^{\infty} I^i e^i \subset R[e].$

Rees algebras are important in commutative algebra.

The Rees Algebra

$$I = \langle a, b, c \rangle \subset R = k[s, t]$$
 has Rees algebra
 $R[I] = \bigoplus_{i=0}^{\infty} I^i e^i \subset R[e].$

Rees algebras are important in commutative algebra.

The map $(x, y, z) \mapsto (ae, be, ce)$ gives a surjection $R[x, y, z] \longrightarrow R[I].$

The kernel is *MC*. Thus *the moving curve ideal* gives the defining relations of the Rees algebra!

Example 1

$$a = 6s^{2}t^{2} - 4t^{4}, \ b = 4s^{3}t - 4st^{3}, \ c = s^{4}$$

The moving curve ideal has five generators:

- Two moving lines of degree 2 in s, t:
 - $p = st x + (\frac{1}{2}s^2 t^2)y 2st z$ $q = s^2 x - st y - 2t^2 z$
- Two moving conics of degree 1 in s, t:
 - $s xy t y^{2} 2t xz s yz + 4t z^{2}$ $s x^{2} - t xy + \frac{1}{2}s y^{2} - 2s xz + t yz$
- The implicit equation: $y^4 + 4x^3z + 2xy^2z - 16x^2z^2 - 6y^2z^2 + 16xz^3$

Example 1 Picture

Here is the curve of Example 1:

Compute Example 1

To generate MC, begin with the moving lines: $p = st \, x + (\frac{1}{2}s^2 - t^2)y - 2st \, z$ $q = s^2 x - st y - 2t^2 z$ • s, t^2 give $p = (tx + \frac{1}{2}sy - 2tz)s + (-y)t^2$ $q = (sx - ty)s + (-2z)t^2$ The Sylvester form is $\det \begin{pmatrix} tx + \frac{1}{2}sy - 2tz & -y \\ sx - ty & -2z \end{pmatrix}$ This is the first moving conic generator of MC!

Compute Example 1

- s^2, t give the second moving conic generator!
- s, t and the moving conic generators give

$$(xy - yz)s + (4z^2 - y^2 - 2xz)t$$
$$(x^2 + \frac{1}{2}y^2 - 2xz)s + (yz - xy)t$$

The Sylvester form is

$$\det \begin{pmatrix} xy - yz & 4z^2 - y^2 - 2xz \\ x^2 + \frac{1}{2}y^2 - 2xz & yz - xy \end{pmatrix}$$

This is the implicit equation!

• The implicit equation is also $\operatorname{Res}(p,q)$.

Example 2

 $a = 3s^{3}t - 3s^{2}t^{2}, \ b = 3s^{2}t^{2} - 3st^{3}, \ c = (s^{2} + t^{2})^{2}$

The moving curve ideal has five generators: • Two moving lines of degree 1,3 in s, t:

$$p = t x - s y$$

$$q = s^{3} x + (2s^{2}t + t^{3})y + (3st^{2} - 3s^{2}t)z$$

- One moving conic of degree 2 in s, t: $s^2 x^2 + (2s^2 + t^2)y^2 + (3st - 3s^2)yz$
- One moving cubic of degree 1 in s, t: $s x^3 + 2s xy^2 + t y^3 - 3s xyz + 3s y^2z$
- The implicit equation:

Example 2 Picture Here is the curve of Example 2: 1.5 -0.5 -0.5 -1.5 0.5 -1 -0.5

Compute Example 2

To generate MC, begin with the moving lines: p = t x - s y $q = s^3 x + (2s^2t + t^3)y + (3st^2 - 3s^2t)z$ The moving lines give p = (-y)s + (x)t $q = (s^2x)s + ((2s^2 + t^2)y + (3st - 3s^2)z)t$ The Sylvester form is $\det \left(\begin{array}{cc} -y & x \\ s^2 x & (2s^2 + t^2)y + (3st - 3s^2)z \end{array} \right)$ This is -1 times the moving conic generator!

Compute Example 2

• p = t x - s y and the moving conic give

$$\det \begin{pmatrix} -y & x\\ sx^2 + 2sy^2 - 3syz & ty^2 + 3syz \end{pmatrix}$$

This is -1 times the moving cubic generator! • p = t x - s y and the moving cubic give

$$\det \begin{pmatrix} -y & x \\ x^3 + 2xy^2 - 3xyz + 3y^2z & y^3 \end{pmatrix}$$

This is -1 times is the implicit equation!

• The implicit equation is also $\operatorname{Res}(p,q)$.

Theorems

There are theorems that explain these examples, plus results on parametrized curves in \mathbb{P}^n .

Some of the people involved:

```
C-
C-, Hoffman, and Wang
Busé
Hoon, Simis, and Vasconcelos
Kustin, Polini, and Ulrich
Cortadellas Benítez and D'Andrea
Goldman, Jia, and Wang
I will explain some of this tomorrow.
```

Rational Plane Curves

Theorem: If $C \subset \mathbb{P}^2$ is defined by an irreducible equation of degree n, then C is rational \iff

$$(n-1)(n-2) = \sum_{p} \nu_p (\nu_p - 1),$$

where the sum is over all singular points p of Cand ν_p is the multiplicity of C at p.

Classical Proof: We will use adjoint curves. A curve D of degree m is adjoint to C if:

• At all singular points p of C with multiplicity ν_p , the curve D has multiplicity at least $\nu_p - 1$.

Lemma: For $m \in \{n - 1, n - 2\}$, \exists a 1-dim linear system of plane curves whose general member D is adjoint to C and meets C in mn - (n - 1)(n - 2) - 1 fixed smooth points of C.

Consequences:

• By Bezout, $mn = D \cdot C = \sum_{p} (\nu_p - 1)\nu_p + mn - (n-1)(n-2) - 1 + \text{ one more point.}$

Lemma: For $m \in \{n - 1, n - 2\}$, \exists a 1-dim linear system of plane curves whose general member D is adjoint to C and meets C in mn - (n - 1)(n - 2) - 1 fixed smooth points of C.

Consequences:

- By Bezout, $mn = D \cdot C = \sum_{p} (\nu_p 1)\nu_p + mn (n-1)(n-2) 1 + \text{ one more point.}$
- This moving point gives a parametrization!

Lemma: For $m \in \{n - 1, n - 2\}$, \exists a 1-dim linear system of plane curves whose general member D is adjoint to C and meets C in mn - (n - 1)(n - 2) - 1 fixed smooth points of C.

Consequences:

- By Bezout, $mn = D \cdot C = \sum_{p} (\nu_p 1)\nu_p + mn (n-1)(n-2) 1 + \text{ one more point.}$
- This moving point gives a parametrization!
- Linear system \Rightarrow the curve is rational! QED

Lemma: For $m \in \{n - 1, n - 2\}$, \exists a 1-dim linear system of plane curves whose general member D is adjoint to C and meets C in mn - (n - 1)(n - 2) - 1 fixed smooth points of C.

Consequences:

- By Bezout, $mn = D \cdot C = \sum_{p} (\nu_p 1)\nu_p + mn (n-1)(n-2) 1 + \text{ one more point.}$
- This moving point gives a parametrization!
- Linear system \Rightarrow the curve is rational! QED Also: we get the parametrization by a resultant.

Example

Consider the affine curve defined by

 $F(x,y) = y^4 + 4x^3 + 2xy^2 - 16x^2 - 6y^2 + 16x = 0.$

Note (4-1)(4-2) = 3 [sing pts] $\cdot 2$ [mult] $\cdot (2-1)$. To parametrize, use the linear system of conics

$$G_{s,t}(x,y) = sx^2 - txy + \frac{1}{2}sy^2 - 2sx + ty = 0.$$

These adjoint curves all go through the origin.

Observation: *G* is one of our moving conics!

These conics go through the singular points and the origin, plus one more point that moves.

The Parametrization

Compute the resultants:

 $\operatorname{Res}(F, G, y) = x(x - 1)^4 (x - 2)^2 (s^4 x - 6t^2 s^2 + 4t^4)$ $\operatorname{Res}(F, G, x) = y^3 (y^2 - 2)^2 (s^3 y - 4ts^2 + 4t^3)$

The constant factors show that G = 0 goes through the origin and the singular points of F = 0. The other factors give

$$x = \frac{6s^2t^2 - 4t^4}{s^4}, \ y = \frac{4s^3t - 4st^3}{s^4}$$

This is an affine version of our original parametrization of F = 0!

Theorem

Theorem: Given a proper parametrization of degree n, there are elements of the moving curve ideal MC of degree one in s, t and degree n-1 or n-2 in x, y, z can be chosen to be *adjoint linear systems* on the rational curve defined by the parametrization.

- Proof by Busé; $\mu = 1$ by C-, Hoffman, Wang.
- Theorem based on an observation of Sendra.
- Moving lines: small deg x, y, z, large deg s, t.
 Adjoint curves: large deg x, y, z, small deg s, t.

Surfaces

Example: The Steiner surface is given by

$$x = \frac{a(s,t)}{d(s,t)} = \frac{2st}{s^2 + t^2 + 1}$$
$$y = \frac{b(s,t)}{d(s,t)} = \frac{2t}{s^2 + t^2 + 1}$$
$$z = \frac{c(s,t)}{d(s,t)} = \frac{2s}{s^2 + t^2 + 1}$$

Surfaces

Example: The Steiner surface is given by

Boeing 777

Boeing 777

Bill Yenne

The Boeing 777 was designed using **50 million** surface patches.

Guggenheim Bilbao

Gehry Sketch

Bilbao Close-Up

Affine Case: A moving plane

 $Ax + By + Cz + D = 0, A, B, C, D \in k[s, t]$

follows a, b, c, d iff Aa + Bb + Cc + Dd = 0. Thus moving planes live in the syzygy module

$$\operatorname{Syz}(a, b, c, d) \subset k[s, t]^4.$$

Affine Case: A moving plane

 $Ax + By + Cz + D = 0, \quad A, B, C, D \in k[s, t]$

follows a, b, c, d iff Aa + Bb + Cc + Dd = 0. Thus moving planes live in the syzygy module

$$\operatorname{Syz}(a, b, c, d) \subset k[s, t]^4.$$

Theorem: The syzygy module Syz(a, b, c, d) is a free k[s, t]-module of rank 3.

Affine Case: A moving plane

 $Ax + By + Cz + D = 0, \quad A, B, C, D \in k[s, t]$

follows a, b, c, d iff Aa + Bb + Cc + Dd = 0. Thus moving planes live in the syzygy module

$$\operatorname{Syz}(a, b, c, d) \subset k[s, t]^4.$$

Theorem: The syzygy module Syz(a, b, c, d) is a free k[s, t]-module of rank 3.

Proof: Auslander-Buchsbaum & Quillen-Suslin!

Projective Case: More complicated!

- $I = \langle a, b, c, d \rangle \subset R = k[s, t, u]$ homogeneous
- $\phi : \mathbb{P}^2 \dashrightarrow \mathbb{P}^3$ rational map
- Basepoints $\mathbf{V}(a, b, c, d) \subset \mathbb{P}^2$
- $S = \overline{\text{image}} \subset \mathbb{P}^3$ parametrized surface

• deg
$$\phi \cdot \deg S = n^2 - \sum_p e_p$$

• $e_p = Hilbert$ -Samuel Multiplicity

Projective Case

The following are equivalent:

- Syz(a, b, c, d) is free
- $\operatorname{pd}(R/I) = 2$
- R/I is Cohen-Macaulay
- *I* is saturated.

Example: Cubic surface in P³ has a, b, c, d deg 3:
Syz(a, b, c, d): 3 moving planes deg 1 in s, t, u.
Basepoints: Six.

Also: No basepoints \Rightarrow Syz(a, b, c, d) not free.

The Bihomogeneous Case

Geometric Modeling often uses *rectangular* surfaces patches, built from polynomials in s, t whose Newton polygon is a rectangle.

This leads naturally to a parametrization

 $\phi: \mathbb{P}^1 \times \mathbb{P}^1 \to \mathbb{P}^3$

(assuming no basepoints), where ϕ is given by *bihomogeneous* polynomials of bidegree (n, m).

Bigraded commutative algebra is *very different!* I will give an example on Thursday.

The Affine Case

A basis of Syz(a, b, c, d) over k[s, t] is a μ -basis.

The Affine Case

A basis of Syz(a, b, c, d) over k[s, t] is a μ -basis. Write the μ -basis as

$$p = A x + B y + C z + D = 0$$

$$q = A' x + B' y + C' z + D' = 0$$

$$r = A'' x + B'' y + C'' z + D'' = 0$$

The Affine Case

A basis of Syz(a, b, c, d) over k[s, t] is a μ -basis. Write the μ -basis as

$$p = A x + B y + C z + D = 0$$

$$q = A' x + B' y + C' z + D' = 0$$

$$r = A'' x + B'' y + C'' z + D'' = 0$$

By Cramer, a, b, c, d are the 3×3 minors of

$$\begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} A & B & C & D \\ A' & B' & C' & D' \\ A'' & B'' & C'' & D'' \end{pmatrix}$$

PASI 2009 - p.35/42

Resultant of a μ **-Basis**

For surfaces, the resultant of an affine μ -basis *almost* gives the implicit equation.

Resultant of a μ **-Basis**

For surfaces, the resultant of an affine μ -basis *almost* gives the implicit equation.

Analysis: At a point (x, y, z) where

$$\operatorname{Res}(p,q,r)=0,$$

the equations

$$p = A x + B y + C z + D = 0$$

$$q = A' x + B' y + C' z + D' = 0$$

$$r = A'' x + B'' y + C'' z + D'' = 0$$

have a solution s, t (possibly at ∞).

No Basepoints

$$\begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} A & B & C & D \\ A' & B' & C' & D' \\ A'' & B'' & C'' & D'' \end{pmatrix}$$

has rank 3 since a, b, c, d are the 3×3 minors. So no basepoints \Rightarrow the moving planes always have a unique point of intersection!

At a basepoint, the parameter values "blow up" to an *exceptional curve* on the surface. These curves come in three flavors:

A line.

- A plane curve.
- A space curve.

At a basepoint, the parameter values "blow up" to an *exceptional curve* on the surface. These curves come in three flavors:

A line.

A plane curve.

A space curve.

These cases correspond to the *rank* of

 \mathbf{X}

$$\begin{pmatrix} p \\ q \\ r \end{pmatrix} = \begin{pmatrix} A & B & C & D \\ A' & B' & C' & D' \\ A'' & B'' & C'' & D'' \end{pmatrix}$$

PASI 2009 – p.38/41

Rank 2 Basepoints

Here, the moving planes intersect in a line:

Rank 1 Basepoints

Here, the moving planes coincide:

- The resultant $\operatorname{Res}(p, q, r)$ has an extraneous factor = the equation of the plane to the power $e_p d_p$, $d_p = \dim_k \mathcal{O}_p / \langle a, b, c, d \rangle$.
- A basepoint has rank one $\iff \langle a, b, c, d \rangle$ is almost LCI.

Rank 0 Basepoints

Here, the moving "planes" are the ambient space, since we have a space curve. Thus:

The resultant Res(p, q, r) vanishes identically.

• A basepoint has rank zero \iff locally $\langle a, b, c, d \rangle$ requires four generators.

Hence

$$\operatorname{Res}(p,q,r)$$

requires a truly bad basepoint before it vanishes!