Topics in Curve

and

Surface Implicitization

David A. Cox

Amherst College

Outline

Curves:

- Moving Lines \& μ-Bases
- Moving Curve Ideal \& the Rees Algebra
- Adjoint Curves

Outline

Curves:

- Moving Lines \& μ-Bases
$■$ Moving Curve Ideal \& the Rees Algebra
- Adjoint Curves

Surfaces:

- Parametrized Surfaces

■ Moving Planes \& Syzygies
■ Affine, Projective \& Bihomogeneous
■ The Resultant of a μ-Basis

Curve Implicitization

Turn a parametrization into an equation.

- Affine: Turn

$$
x=\frac{a(t)}{c(t)}, \quad y=\frac{b(t)}{c(t)}
$$

into $F(x, y)=0$.

Curve Implicitization

Turn a parametrization into an equation.
■ Affine: Turn

$$
x=\frac{a(t)}{c(t)}, \quad y=\frac{b(t)}{c(t)}
$$

into $F(x, y)=0$.
■ Projective: Turn

$$
x=a(s, t), \quad y=b(s, t), \quad z=c(s, t)
$$

into $F(x, y, z)=0$.

Moving Lines

- A moving line is an equation

$$
A(s, t) x+B(s, t) y+C(s, t) z=0 .
$$

Moving Lines

- A moving line is an equation

$$
A(s, t) x+B(s, t) y+C(s, t) z=0
$$

- A moving line follows a parametrization

$$
\begin{gathered}
x=a(s, t), \quad y=b(s, t), \quad z=c(s, t) \\
\text { if }(a(s, t), b(s, t), c(s, t)) \text { lies on the line } \\
A(s, t) x+B(s, t) y+C(s, t) z=0 \text { for all } s, t .
\end{gathered}
$$

Moving Lines

- A moving line is an equation

$$
A(s, t) x+B(s, t) y+C(s, t) z=0
$$

- A moving line follows a parametrization

$$
x=a(s, t), \quad y=b(s, t), \quad z=c(s, t)
$$

if $(a(s, t), b(s, t), c(s, t))$ lies on the line $A(s, t) x+B(s, t) y+C(s, t) z=0$ for all s, t.

- If two moving lines follow a parametrization, their intersection is the parametrization.

Moving Line Picture

Here are two moving lines for an ellipse:

Moving Line Picture

Here are two moving lines for an ellipse:

Moving Line Picture

Here are two moving lines for an ellipse:

Together they define the ellipse:

Moving Line Picture

Here are two moving lines for an ellipse:

Together they define the ellipse:

Moving Line Picture

Here are two moving lines for an ellipse:

Together they define the ellipse:

This construction is due Steiner in 1832.

μ-Bases

Theorem: $a, b, c \in k[s, t]$ homogeneous, $\operatorname{deg}=n$, $\operatorname{gcd}(a, b, c)=1$. There exist moving lines p, q with:

1. Every moving line can be uniquely written

$$
u p+v q,
$$

where u and v are homogeneous of degree $m-\operatorname{deg}(p)$ and $m-\operatorname{deg}(q)$.
2. $\operatorname{deg}(p)+\operatorname{deg}(q)=n$.

μ-Bases

Theorem: $a, b, c \in k[s, t]$ homogeneous, $\operatorname{deg}=n$, $\operatorname{gcd}(a, b, c)=1$. There exist moving lines p, q with:

1. Every moving line can be uniquely written

$$
u p+v q,
$$

where u and v are homogeneous of degree $m-\operatorname{deg}(p)$ and $m-\operatorname{deg}(q)$.
2. $\operatorname{deg}(p)+\operatorname{deg}(q)=n$.

Definition: p, q are a μ-basis when

$$
\mu=\operatorname{deg}(p) \leq \operatorname{deg}(q)=n-\mu
$$

Proof

Let $R=k[s, t]$ and $I=\langle a, b, c\rangle \subset R$.
The Hilbert Syzygy Theorem and a Hilbert polynomial computation give a free resolution
$0 \rightarrow R(-n-\mu) \oplus R(-2 n+\mu) \rightarrow R(-n)^{3} \xrightarrow{(a, b, c)} I \rightarrow 0$.
The kernel of (a, b, c) is $\operatorname{Syz}(a, b, c)$. It consists of all triples $(A, B, C) \in R^{3}$ such that

$$
A a+B b+C c=0
$$

These give the moving lines $A x+B y+C z$ that follow the curve.

QED

Some History

■ 1832 - Steiner describes conic sections using moving lines.

Some History

■ 1832 - Steiner describes conic sections using moving lines.
$\square 1887$ - Meyer describes the syzygies of $a, b, c \in k[s, t]$ and makes a conjecture for the syzygies of a_{1}, \ldots, a_{m}.

Some History

■ 1832 - Steiner describes conic sections using moving lines.
■ 1887 - Meyer describes the syzygies of $a, b, c \in k[s, t]$ and makes a conjecture for the syzygies of a_{1}, \ldots, a_{m}.

- 1890 - Hilbert proves the Syzygy Theorem and proves Meyer's conjecture.

Some History

■ 1832 - Steiner describes conic sections using moving lines.
■ 1887 - Meyer describes the syzygies of $a, b, c \in k[s, t]$ and makes a conjecture for the syzygies of a_{1}, \ldots, a_{m}.
■ 1890 - Hilbert proves the Syzygy Theorem and proves Meyer's conjecture.
■ 1995 - Sederberg and Chen interpret moving lines in terms of syzygies.

Moving Curves

Moving lines are not the full story. Let $R=k[s, t]$.

- A polynomial

$$
F=\sum_{i+j+l=m} A_{i j l}(s, t) x^{i} y^{j} z^{l} \in R[x, y, z]
$$

is called a moving curve of degree m.

Moving Curves

Moving lines are not the full story. Let $R=k[s, t]$.

- A polynomial

$$
F=\sum_{i+j+l=m} A_{i j l}(s, t) x^{i} y^{j} z^{l} \in R[x, y, z]
$$

is called a moving curve of degree m.

- A moving curve follows our parametrization if

$$
\sum_{i+j+l=m} A_{i j l} a^{i} b^{j} c^{l} \equiv 0 \text { in } R
$$

Moving Curves

Moving lines are not the full story. Let $R=k[s, t]$.

- A polynomial

$$
F=\sum_{i+j+l=m} A_{i j l}(s, t) x^{i} y^{j} z^{l} \in R[x, y, z]
$$

is called a moving curve of degree m.

- A moving curve follows our parametrization if

$$
\sum_{i+j+l=m} A_{i j l} a^{i} b^{j} c^{l} \equiv 0 \text { in } R
$$

- The moving curve ideal $M C \subset R[x, y, z]$ is generated by these moving curves.

The Rees Algebra

$$
\begin{gathered}
I=\langle a, b, c\rangle \subset R=k[s, t] \text { has Rees algebra } \\
R[I]=\bigoplus_{i=0}^{\infty} I^{i} e^{i} \subset R[e] .
\end{gathered}
$$

Rees algebras are important in commutative algebra.

The Rees Algebra

$$
\begin{gathered}
I=\langle a, b, c\rangle \subset R=k[s, t] \text { has Rees algebra } \\
R[I]=\bigoplus_{i=0}^{\infty} I^{i} e^{i} \subset R[e] .
\end{gathered}
$$

Rees algebras are important in commutative algebra.

The map $(x, y, z) \mapsto(a e, b e, c e)$ gives a surjection

$$
R[x, y, z] \longrightarrow R[I] .
$$

The kernel is $M C$. Thus the moving curve ideal gives the defining relations of the Rees algebra!

Example 1

$$
a=6 s^{2} t^{2}-4 t^{4}, \quad b=4 s^{3} t-4 s t^{3}, \quad c=s^{4}
$$

The moving curve ideal has five generators:

- Two moving lines of degree 2 in s, t :

$$
\begin{aligned}
& p=s t x+\left(\frac{1}{2} s^{2}-t^{2}\right) y-2 s t z \\
& q=s^{2} x-s t y-2 t^{2} z
\end{aligned}
$$

- Two moving conics of degree 1 in s, t :

$$
\begin{aligned}
& s x y-t y^{2}-2 t x z-s y z+4 t z^{2} \\
& s x^{2}-t x y+\frac{1}{2} s y^{2}-2 s x z+t y z
\end{aligned}
$$

- The implicit equation:

$$
y^{4}+4 x^{3} z+2 x y^{2} z-16 x^{2} z^{2}-6 y^{2} z^{2}+16 x z^{3}
$$

Example 1 Picture

Here is the curve of Example 1:

Compute Example 1

To generate $M C$, begin with the moving lines:

$$
\begin{aligned}
& p=s t x+\left(\frac{1}{2} s^{2}-t^{2}\right) y-2 s t z \\
& q=s^{2} x-s t y-2 t^{2} z
\end{aligned}
$$

- s, t^{2} give

$$
\begin{aligned}
& p=\left(t x+\frac{1}{2} s y-2 t z\right) s+(-y) t^{2} \\
& q=(s x-t y) s+(-2 z) t^{2}
\end{aligned}
$$

The Sylvester form is

$$
\operatorname{det}\left(\begin{array}{cc}
t x+\frac{1}{2} s y-2 t z & -y \\
s x-t y & -2 z
\end{array}\right)
$$

This is the first moving conic generator of $M C$!

Compute Example 1

- s^{2}, t give the second moving conic generator!
- s, t and the moving conic generators give

$$
\begin{aligned}
& (x y-y z) s+\left(4 z^{2}-y^{2}-2 x z\right) t \\
& \left(x^{2}+\frac{1}{2} y^{2}-2 x z\right) s+(y z-x y) t
\end{aligned}
$$

The Sylvester form is

$$
\operatorname{det}\left(\begin{array}{cc}
x y-y z & 4 z^{2}-y^{2}-2 x z \\
x^{2}+\frac{1}{2} y^{2}-2 x z & y z-x y
\end{array}\right)
$$

This is the implicit equation!

- The implicit equation is also $\operatorname{Res}(p, q)$.

Example 2

$$
a=3 s^{3} t-3 s^{2} t^{2}, \quad b=3 s^{2} t^{2}-3 s t^{3}, \quad c=\left(s^{2}+t^{2}\right)^{2}
$$

The moving curve ideal has five generators:

- Two moving lines of degree 1,3 in s, t :

$$
\begin{aligned}
& p=t x-s y \\
& q=s^{3} x+\left(2 s^{2} t+t^{3}\right) y+\left(3 s t^{2}-3 s^{2} t\right) z
\end{aligned}
$$

- One moving conic of degree 2 in s, t :

$$
s^{2} x^{2}+\left(2 s^{2}+t^{2}\right) y^{2}+\left(3 s t-3 s^{2}\right) y z
$$

- One moving cubic of degree 1 in s, t :

$$
s x^{3}+2 s x y^{2}+t y^{3}-3 s x y z+3 s y^{2} z
$$

- The implicit equation:

$$
x^{4}+2 x^{2} y^{2}+y^{4}-3 x^{2} y z+3 x y^{2} z
$$

Example 2 Picture

Here is the curve of Example 2:

Compute Example 2

To generate $M C$, begin with the moving lines:

$$
\begin{aligned}
& p=t x-s y \\
& q=s^{3} x+\left(2 s^{2} t+t^{3}\right) y+\left(3 s t^{2}-3 s^{2} t\right) z
\end{aligned}
$$

- The moving lines give

$$
\begin{aligned}
& p=(-y) s+(x) t \\
& q=\left(s^{2} x\right) s+\left(\left(2 s^{2}+t^{2}\right) y+\left(3 s t-3 s^{2}\right) z\right) t
\end{aligned}
$$

The Sylvester form is

$$
\operatorname{det}\left(\begin{array}{cc}
-y & x \\
s^{2} x & \left(2 s^{2}+t^{2}\right) y+\left(3 s t-3 s^{2}\right) z
\end{array}\right)
$$

This is -1 times the moving conic generator!

Compute Example 2

- $p=t x-s y$ and the moving conic give

$$
\operatorname{det}\left(\begin{array}{cc}
-y & x \\
s x^{2}+2 s y^{2}-3 s y z & t y^{2}+3 s y z
\end{array}\right)
$$

This is -1 times the moving cubic generator!

- $p=t x-s y$ and the moving cubic give

$$
\operatorname{det}\left(\begin{array}{cc}
-y & x \\
x^{3}+2 x y^{2}-3 x y z+3 y^{2} z & y^{3}
\end{array}\right)
$$

This is -1 times is the implicit equation!

- The implicit equation is also $\operatorname{Res}(p, q)$.

Theorems

There are theorems that explain these examples, plus results on parametrized curves in \mathbb{P}^{n}.

Some of the people involved:
C-
C-, Hoffman, and Wang
Busé
Hoon, Simis, and Vasconcelos
Kustin, Polini, and Ulrich
Cortadellas Benítez and D’Andrea
Goldman, Jia, and Wang
I will explain some of this tomorrow.

Rational Plane Curves

Theorem: If $C \subset \mathbb{P}^{2}$ is defined by an irreducible equation of degree n, then C is rational

$$
(n-1)(n-2)=\sum_{p} \nu_{p}\left(\nu_{p}-1\right)
$$

where the sum is over all singular points p of C and ν_{p} is the multiplicity of C at p.
Classical Proof: We will use adjoint curves. A curve D of degree m is adjoint to C if:

- At all singular points p of C with multiplicity ν_{p}, the curve D has multiplicity at least $\nu_{p}-1$.

The Classical Proof

Lemma: For $m \in\{n-1, n-2\}, \exists$ a 1-dim linear system of plane curves whose general member D is adjoint to C and meets C in $m n-(n-1)(n-2)-1$ fixed smooth points of C.

Consequences:

- By Bezout, $m n=D \cdot C=\sum_{p}\left(\nu_{p}-1\right) \nu_{p}+$ $m n-(n-1)(n-2)-1+$ one more point.

The Classical Proof

Lemma: For $m \in\{n-1, n-2\}, \exists$ a 1-dim linear system of plane curves whose general member D is adjoint to C and meets C in $m n-(n-1)(n-2)-1$ fixed smooth points of C.

Consequences:

- By Bezout, $m n=D \cdot C=\sum_{p}\left(\nu_{p}-1\right) \nu_{p}+$ $m n-(n-1)(n-2)-1+$ one more point.
- This moving point gives a parametrization!

The Classical Proof

Lemma: For $m \in\{n-1, n-2\}, \exists$ a 1-dim linear system of plane curves whose general member D is adjoint to C and meets C in $m n-(n-1)(n-2)-1$ fixed smooth points of C.

Consequences:

- By Bezout, $m n=D \cdot C=\sum_{p}\left(\nu_{p}-1\right) \nu_{p}+$ $m n-(n-1)(n-2)-1+$ one more point.
- This moving point gives a parametrization!
- Linear system \Rightarrow the curve is rational! QED

The Classical Proof

Lemma: For $m \in\{n-1, n-2\}, \exists$ a 1-dim linear system of plane curves whose general member D is adjoint to C and meets C in $m n-(n-1)(n-2)-1$ fixed smooth points of C.

Consequences:

- By Bezout, $m n=D \cdot C=\sum_{p}\left(\nu_{p}-1\right) \nu_{p}+$ $m n-(n-1)(n-2)-1+$ one more point.
- This moving point gives a parametrization!
- Linear system \Rightarrow the curve is rational! QED

Also: we get the parametrization by a resultant.

Example

Consider the affine curve defined by
$F(x, y)=y^{4}+4 x^{3}+2 x y^{2}-16 x^{2}-6 y^{2}+16 x=0$.
Note $(4-1)(4-2)=3$ [sing pts] $\cdot 2$ [mult] $\cdot(2-1)$.
To parametrize, use the linear system of conics

$$
G_{s, t}(x, y)=s x^{2}-t x y+\frac{1}{2} s y^{2}-2 s x+t y=0
$$

These adjoint curves all go through the origin.
Observation: G is one of our moving conics!

Picture

These conics go through the singular points and the origin, plus one more point that moves.

The Parametrization

Compute the resultants:
$\operatorname{Res}(F, G, y)=x(x-1)^{4}(x-2)^{2}\left(s^{4} x-6 t^{2} s^{2}+4 t^{4}\right)$
$\operatorname{Res}(F, G, x)=y^{3}\left(y^{2}-2\right)^{2}\left(s^{3} y-4 t s^{2}+4 t^{3}\right)$
The constant factors show that $G=0$ goes through the origin and the singular points of $F=0$. The other factors give

$$
x=\frac{6 s^{2} t^{2}-4 t^{4}}{s^{4}}, y=\frac{4 s^{3} t-4 s t^{3}}{s^{4}} .
$$

This is an affine version of our original parametrization of $F=0$!

Theorem

Theorem: Given a proper parametrization of degree n, there are elements of the moving curve ideal $M C$ of degree one in s, t and degree $n-1$ or $n-2$ in x, y, z can be chosen to be adjoint linear systems on the rational curve defined by the parametrization.

- Proof by Busé; $\mu=1$ by C-, Hoffman, Wang.
- Theorem based on an observation of Sendra.
- Moving lines: small deg x, y, z, large deg s, t. Adjoint curves: large deg x, y, z, small deg ${ }_{2}, t$.

Surfaces

Example: The Steiner surface is given by

$$
\begin{aligned}
& x=\frac{a(s, t)}{d(s, t)}=\frac{2 s t}{s^{2}+t^{2}+1} \\
& y=\frac{b(s, t)}{d(s, t)}=\frac{2 t}{s^{2}+t^{2}+1} \\
& z=\frac{c(s, t)}{d(s, t)}=\frac{2 s}{s^{2}+t^{2}+1}
\end{aligned}
$$

Surfaces

Example: The Steiner surface is given by

$$
\begin{array}{l|l}
0.75 \\
0.0 .5 & =\frac{a(s, t)}{d(s, t)}=\frac{2 s t}{s^{2}+t^{2}+1} \\
y=\frac{b(s, t)}{d(s, t)}=\frac{2 t}{s^{2}+t^{2}+1} \\
z=\frac{c(s, t)}{d(s, t)}=\frac{2 s}{s^{2}+t^{2}+1}
\end{array}
$$

Boeing 777

Boeing 777

The Boeing 777 was designed using 50 million

 surface patches.
Guggenheim Bilbao

Gehry Sketch

Bilbao Close-Up

Commutative Algebra

Affine Case: A moving plane

$$
A x+B y+C z+D=0, \quad A, B, C, D \in k[s, t]
$$

follows a, b, c, d iff $A a+B b+C c+D d=0$. Thus moving planes live in the syzygy module

$$
\operatorname{Syz}(a, b, c, d) \subset k[s, t]^{4} .
$$

Commutative Algebra

Affine Case: A moving plane

$$
A x+B y+C z+D=0, \quad A, B, C, D \in k[s, t]
$$

follows a, b, c, d iff $A a+B b+C c+D d=0$. Thus moving planes live in the syzygy module

$$
\operatorname{Syz}(a, b, c, d) \subset k[s, t]^{4} .
$$

Theorem: The syzygy module $\operatorname{Syz}(a, b, c, d)$ is a free $k[s, t]$-module of rank 3 .

Commutative Algebra

Affine Case: A moving plane

$$
A x+B y+C z+D=0, \quad A, B, C, D \in k[s, t]
$$

follows a, b, c, d iff $A a+B b+C c+D d=0$. Thus moving planes live in the syzygy module

$$
\operatorname{Syz}(a, b, c, d) \subset k[s, t]^{4} .
$$

Theorem: The syzygy module $\operatorname{Syz}(a, b, c, d)$ is a free $k[s, t]$-module of rank 3 .

Proof: Auslander-Buchsbaum \& Quillen-Suslin!

Commutative Algebra

Projective Case: More complicated!

- $I=\langle a, b, c, d\rangle \subset R=k[s, t, u]$ homogeneous
- $\phi: \mathbb{P}^{2} \rightarrow \mathbb{P}^{3}$ rational map
- Basepoints $\mathbf{V}(a, b, c, d) \subset \mathbb{P}^{2}$
- $S=\overline{\text { image }} \subset \mathbb{P}^{3}$ parametrized surface
- $\operatorname{deg} \phi \cdot \operatorname{deg} S=n^{2}-\sum_{p} e_{p}$
- $e_{p}=$ Hilbert-Samuel Multiplicity

Projective Case

The following are equivalent:

- $\operatorname{Syz}(a, b, c, d)$ is free
- $\operatorname{pd}(R / I)=2$
- R / I is Cohen-Macaulay
- I is saturated.

Example: Cubic surface in \mathbb{P}^{3} has a, b, c, d deg 3:

- Syz $(a, b, c, d): 3$ moving planes deg 1 in s, t, u.
- Basepoints: Six.

Also: No basepoints $\Rightarrow \operatorname{Syz}(a, b, c, d)$ not free.

The Bihomogeneous Case

Geometric Modeling often uses rectangular surfaces patches, built from polynomials in s, t whose Newton polygon is a rectangle.

This leads naturally to a parametrization

$$
\phi: \mathbb{P}^{1} \times \mathbb{P}^{1} \rightarrow \mathbb{P}^{3}
$$

(assuming no basepoints), where ϕ is given by bihomogeneous polynomials of bidegree (n, m).

Bigraded commutative algebra is very different! I will give an example on Thursday.

The Affine Case

A basis of $\operatorname{Syz}(a, b, c, d)$ over $k[s, t]$ is a μ-basis.

The Affine Case

A basis of $\operatorname{Syz}(a, b, c, d)$ over $k[s, t]$ is a μ-basis. Write the μ-basis as

$$
\begin{aligned}
& p=A x+B y+C z+D=0 \\
& q=A^{\prime} x+B^{\prime} y+C^{\prime} z+D^{\prime}=0 \\
& r=A^{\prime \prime} x+B^{\prime \prime} y+C^{\prime \prime} z+D^{\prime \prime}=0
\end{aligned}
$$

The Affine Case

A basis of $\operatorname{Syz}(a, b, c, d)$ over $k[s, t]$ is a μ-basis.
Write the μ-basis as

$$
\begin{aligned}
& p=A x+B y+C z+D=0 \\
& q=A^{\prime} x+B^{\prime} y+C^{\prime} z+D^{\prime}=0 \\
& r=A^{\prime \prime} x+B^{\prime \prime} y+C^{\prime \prime} z+D^{\prime \prime}=0
\end{aligned}
$$

By Cramer, a, b, c, d are the 3×3 minors of

$$
\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)=\left(\begin{array}{llll}
A & B & C & D \\
A^{\prime} & B^{\prime} & C^{\prime} & D^{\prime} \\
A^{\prime \prime} & B^{\prime \prime} & C^{\prime \prime} & D^{\prime \prime}
\end{array}\right)
$$

Resultant of a μ-Basis

For surfaces, the resultant of an affine μ-basis almost gives the implicit equation.

Resultant of a μ-Basis

For surfaces, the resultant of an affine μ-basis almost gives the implicit equation.

Analysis: At a point (x, y, z) where

$$
\operatorname{Res}(p, q, r)=0
$$

the equations

$$
\begin{aligned}
& p=A x+B y+C z+D=0 \\
& q=A^{\prime} x+B^{\prime} y+C^{\prime} z+D^{\prime}=0 \\
& r=A^{\prime \prime} x+B^{\prime \prime} y+C^{\prime \prime} z+D^{\prime \prime}=0
\end{aligned}
$$

have a solution s, t (possibly at ∞).

No Basepoints

$$
\left(\begin{array}{l}
p \\
q \\
r
\end{array}\right)=\left(\begin{array}{cccc}
A & B & C & D \\
A^{\prime} & B^{\prime} & C^{\prime} & D^{\prime} \\
A^{\prime \prime} & B^{\prime \prime} & C^{\prime \prime} & D^{\prime \prime}
\end{array}\right)
$$

has rank 3 since a, b, c, d are the 3×3 minors. So no basepoints \Rightarrow the moving planes always have a unique point of intersection!

Basepoints

At a basepoint, the parameter values "blow up" to an exceptional curve on the surface. These curves come in three flavors:

- A line.
- A plane curve.
- A space curve.

Basepoints

At a basepoint, the parameter values "blow up" to an exceptional curve on the surface. These curves come in three flavors:

- A line.
- A plane curve.
- A space curve.

These cases correspond to the rank of

$$
\left(\begin{array}{c}
p \\
q \\
r
\end{array}\right)=\left(\begin{array}{llll}
A & B & C & D \\
A^{\prime} & B^{\prime} & C^{\prime} & D^{\prime} \\
A^{\prime \prime} & B^{\prime \prime} & C^{\prime \prime} & D^{\prime \prime}
\end{array}\right) .
$$

Rank 2 Basepoints

Here, the moving planes intersect in a line:

Furthermore:

■ The resultant $\operatorname{Res}(p, q, r)$ vanishes exactly on the surface, at least for s, t finite.
■ A basepoint has rank two \Longleftrightarrow it is LCI!

Rank 1 Basepoints

Here, the moving planes coincide:

exceptional curve
Furthermore:

- The resultant $\operatorname{Res}(p, q, r)$ has an extraneous factor $=$ the equation of the plane to the power $e_{p}-d_{p}, d_{p}=\operatorname{dim}_{k} \mathcal{O}_{p} /\langle a, b, c, d\rangle$.
■ A basepoint has rank one $\Longleftrightarrow\langle a, b, c, d\rangle$ is almost LCI.

Rank 0 Basepoints

Here, the moving "planes" are the ambient space, since we have a space curve. Thus:

- The resultant $\operatorname{Res}(p, q, r)$ vanishes identically.
- A basepoint has rank zero \Longleftrightarrow locally $\langle a, b, c, d\rangle$ requires four generators.
Hence

$$
\operatorname{Res}(p, q, r)
$$

requires a truly bad basepoint before it vanishes!

