Newton's Method, Galois Theory, and Something You Probably Didn't Know About A_5

David A. Cox

Amherst College

References

- Klein, Lectures on the Icosahedron,
 Teubner, 1884
- Smale, On the efficiency of algorithm analysis, Bull. AMS, 1985
- McMullen, Families of rational maps and iterative root-finding algorithms,
 Annals of Math., 1987
- Doyle/McMullen, Solving the quintic by iteration, Acta Math., 1989
- Shurman, Geometry of the Quintic,
 Wiley, 1997

Outline

- Newton's Method for Polynomials
- Generally Convergent
 Iterative Algorithms
- The McMullen Rigidity Theorem
- A Galois Theory of Generally
 Convergent Iterative Algorithms
- The Doyle/McMullen Theorem and the Quintic
- The Algorithm

Newton's Method for Polynomials

Newton's Method doesn't always converge to a root.

Example: $f(x) = x^3 - 5x$ gives

$$N(x) = x - \frac{f(x)}{f'(x)} = x - \frac{x^3 - 5x}{3x^2 - 5}.$$

N has the 2-cycle 1
ightarrow -1
ightarrow 1
ightarrow

Can do Newton's Method over C:

Here is Newton's Method for $x^3 - 1$ over **C**:

Initial values which converge to 1 are shaded black.

Naive Guess:

For a dense open subset of initial values, Newton's Method converges to a root.

Counterexample: Let

•
$$f(x) = \frac{1}{2}x^3 - x + 1$$
.

$$\bullet \ N = x - \frac{f(x)}{f'(x)}.$$

Then:

- ullet 0 o 1 o 0 o · · · under N.
- N'(0) = 0, so attracting 2-cycle.

Hence initial values near 0 or 1 do not converge to a root under Newton's Method.

Generally Convergent Iterative Algorithms

In 1985, Smale asked for an iterative algorithm which:

- is rational in the coefficients of a polynomial, and
- converges generally to a root of the polynomial.

Generally convergent means that for $f = x^n + a_1 x^{n-1} + \cdots + a_n$,

- ullet for (a_1,\ldots,a_n) in a dense open subset of ${f C}^n$, and
- for z_0 in a dense open set of \mathbf{C} , the algorithm converges to a root of f.

In 1987, McMullen proved that an iterative, generally convergent algorithm doesn't exist when $n \geq 4$.

Also, for n = 3, consider

$$f(x) = x^3 + ax + b.$$

Then one can show:

- Newton's Method for f(x) is not generally convergent.
- Newton's Method for

$$\frac{f(x)}{3ax^2 + 9bx - a}$$

is generally convergent.

Definition of a Generally Convergent Iterative Algorithm:

Consider a field K which is:

- ullet a finite extension of ${f C}(t_1,\ldots,t_n)$, or equivalently,
- the rational function field C(V)
 of an irreducible variety V.
 (An example is V = Cⁿ.)

Definition: A rational iterative algorithm is an element $T \in K(z)$, where z is a coordinate on

$$\mathbf{P}^1 = \mathbf{C} \cup \{\infty\}.$$

Example: For $K = \mathbf{C}(a_1, \dots, a_n)$ and $V = \mathbf{C}^n$, Newton's Method is

$$N = z - \frac{z^n + a_1 z^{n-1} + \dots + a_n}{n z^{n-1} + \dots + a_{n-1}}$$

This is an element of K(z).

Notation: Let $T \in K(z)$. For most $v \in V$, $T_v \in \mathbf{C}(z)$ is defined. Thus $T_v : \mathbf{P}^1 \to \mathbf{P}^1$.

Definition: T is **generally convergent** if $\{T_v^n(z)\}_{n=0}^{\infty}$ converges for (v,z) in a dense open subset of $V \times \mathbf{P}^1$.

The McMullen Rigidity Theorem

Theorem: If T is generally convergent, then for v in a dense open subset of V, the maps T_v are all conjugate under PGL(2, \mathbb{C}).

Example: For $K = \mathbf{C}(t)$, $T_t = z - \frac{z^n - t}{nz^{n-1}}$ is generally convergent. If $\phi(z) = z/a$, then

$$\phi \circ T_t \circ \phi^{-1} = T_{t/a^n}.$$

Note also that $a = \sqrt[n]{t}$ implies

$$T_t = \phi^{-1} \circ f \circ \phi, \ f = z - \frac{z^n - 1}{nz^{n-1}}.$$

This will be useful later.

Corollary: No generally convergent iterative algorithm for general polynomial of degree ≥ 4 .

Proof: If such an algorithm existed for a general polynomial of degree n, then the roots would be conjugate under PGL(2, \mathbb{C}).

More precisely, suppose f,g have degree n. If f has roots a_i , then we can find z_i with

$$T_f^n(z_i) \to a_i$$

If we have $\phi \in PGL(2, \mathbb{C})$ with

$$\phi \circ T_f \circ \phi^{-1} = T_g,$$

then setting $w_i = \phi(z_i)$ implies

$$T_g^n(w_i) \to \phi(a_i)$$

Thus the $\phi(a_i)$ are the roots of g.

But the action PGL(2, \mathbb{C}) on \mathbb{P}^1 is only 3-transitive!

A Galois Theory of Generally Convergent Iterative Algorithms

The **output** of T is the set

consisting of all $(v,w) \in V \times \mathbf{P}^1$ such that

$$w = \lim_{n \to \infty} T_v^n(z)$$

for an open set of z's. Note that

$$\mathsf{Output}(T) \subset \{(v,w) \mid T_v(w) = w\}.$$

Let $\overline{\text{Output}(T)}$ be the smallest variety containing Output(T).

Definition: A generally convergent iterative algorithm $T \in K(z)$ is **irreducible** if $\overline{\text{Output}(T)}$ is an irreducible variety. We denote its function field by K_T .

Such a T gives a finite extension

$$K \subset K_T$$
.

Let K' be the Galois closure of this extension and set

$$G = \operatorname{Gal}(K'/K).$$

Theorem: (Doyle/McMullen)

If T is as above, then there are:

- $f(z) \in \mathbf{C}(z)$
- $\phi \in \mathsf{PGL}(2,K')$
- $\rho: G \to \mathsf{PGL}(2, \mathbf{C})$ injective such that:
- $1) T = \phi^{-1} \circ f \circ \phi$
- 2) $\{f^n(z)\}_{n=0}^{\infty}$ converges on a dense open set of \mathbf{P}^1

Furthermore:

- 3) $f \circ \rho(g) = \rho(g) \circ f$ for all $g \in G$.
- 4) $\phi^g = \rho(g) \circ \phi$ for all $g \in G$.
- 5) All irreducible generally convergent iterative algorithms arise this way.

Example: Let $K = \mathbf{C}(t)$ and $T = z - \frac{z^n - t}{nz^{n-1}}$. Then we have:

$$K_T = K' = \mathbf{C}(\sqrt[n]{t}).$$

Furthermore:

$$\bullet \ f = z - \frac{z^n - 1}{nz^{n-1}}.$$

•
$$\phi = \begin{pmatrix} 1/\sqrt[n]{t} & 0 \\ 0 & 1 \end{pmatrix} \in PGL(2, K').$$

•
$$G = \{\sigma_i\}, \ \sigma_i(\sqrt[n]{t}) = \zeta_n^i \sqrt[n]{t}.$$

•
$$\rho(\sigma_i) = \begin{pmatrix} \zeta_n^{-i} & 0 \\ 0 & 1 \end{pmatrix} \in PGL(2, \mathbf{C}).$$

Definition: $K \subset L$ is **computable** if there are fields

$$K = K_0 \subset K_1 \subset \cdots \subset K_m$$

such that:

- ullet $L\subset K_m$, and
- There are generally convergent irreducible $T_i \in K_i(z)$ such that $K_{i+1} = (K_i)_{T_i}$ for all i.

Definition: A finite group is called **nearly solvable** if its Jordan-Hölder components are either cyclic or A_5 .

The Doyle/McMullen Theorem and the Quintic

Theorem: $K \subset L$ is computable \iff Gal(L'/K) is nearly solvable, L' = Galois closure of $K \subset L$.

Proof: We can assume the Galois group is cyclic or A_5 . By the Doyle/McMullen theorem, we need to find f, ϕ, ρ .

Cyclic Case: Done by previous example!

 A_5 Case: Solve the quintic by iteration. First use Tschirnhaus transformations to reduce to

$$z^5 - 10Cz^3 + 45C^2z - C^2 = 0.$$

This is the Brioschi resolvent.

Next project the icosahedron onto S^2 and then map to the plane via sterographic projection. Then consider

$$F(x,y) = x^{11}y + 11x^6y^6 - xy^{11}.$$

This is invariant under the binary icosahedral group and vanishes at the 12 vertices.

Then the rational function

$$f_{11}(z) = -\frac{\frac{\partial F}{\partial y}(z, 1)}{\frac{\partial F}{\partial x}(z, 1)}$$
$$= -\frac{z^{11} + 66z^6 - 11z}{11z^{10} + 66z^5 - 1}$$

has nice properties:

- f_{11} commutes with A_5 .
- The 20 face centers are the critical points of f_{11} .
- f_{11} (face center) = center of antipodal face.

Thus the face centers give ten 2-cycles for f_{11} .

Dynamical Systems Theory \Rightarrow there is a dense open set of \mathbf{P}^1

$$\{f_{11}^n(z)\}_{n=0}^{\infty}$$

converges to of the ten 2-cycles.

Then $f = f_{11} \circ f_{11}$ is what we want! It remains to:

• Find ϕ .

on which

- Compute $T = \phi^{-1} \circ f \circ \phi$.
- Relate to Brioschi resolvent.

This gives the following algorithm.

The Algorithm

Define g(Z, w) to be the polynomial:

$$91125Z^{6} + (-133650w^{2} + 61560w - 193536)Z^{5} + (-66825w^{4} + 142560w^{3} + 133056w^{2} - 61440w + 102400)Z^{4} + (5940w^{6} + 4752w^{5} + 63360w^{4} - 140800w^{3})Z^{3} + (-1485w^{8} + 3168w^{7} - 10560w^{6})Z^{2} + (-66w^{10} + 440w^{9})Z + w^{12}$$

Define h(Z, w) to be the polynomial:

$$(1215w - 648)Z^4 + (-540w^3 - 216w^2 - 1152w + 640)Z^3 + (378w^5 - 504w^4 + 960w^3)Z^2 + (36w^7 - 168w^6)Z$$

To solve $s^5 - 10Cs^3 + 45C^2s - C^2 = 0$, proceed in five steps:

- 1) Set Z = 1 1728C.
- 2) Compute the rational function

$$T_Z = w - 12 \frac{g(Z, w)}{\frac{\partial g}{\partial w}(Z, w)}.$$

- 3) Iterate $T_Z(T_Z(w))$ on a random starting point until it converges to a limit point w_0 . Set $w_1 = T_Z(w_0)$.
- 4) For i = 0, 1 compute

$$\mu_i = \frac{100Z(Z-1)h(Z, w_i)}{g(Z, w_i)}.$$

5) Finally, for i = 0, 1, compute

$$s_i = \frac{(9 + \sqrt{-15})\mu_i + (9 - \sqrt{-15})\mu_{1-i}}{90}.$$

Then s_0 and s_1 are two roots of the Brioschi resolvent!