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B�ezout's Theorem
Suppose that C;D � P2 are urvesof degrees n;m with no ommonomponents. Then

nm = Xp2C\D Ip(C;D)
where

Ip(C;D) = dimOP2;p=h~f;~giand ~f;~g are loal equations ofC;D near p.



Degree of a RationalSurfae
' : P2�! P3 is de�ned by a; b; ; dof degree n, no ommon fators.� Z = fp j a(p) = � � � = 0g is thebase point lous.� S = '(P2 n Z) is the image.We assume dimS = 2.
Degree Formula:n2 = degS � deg'+ Xp2Zm(p):
m(p) is the \multipliity" of p.



Naive guess:
m(p) = dimOP2;p=Ip = dimRp=Ip;where Ip = h~a; : : : ; ~di
Counterexample:a = s2u+ t3, b = t2u+ s3, = stu, d = s2u gives 'with basepoint p = (0;0;1)and Ip = hs2; st; t2i.
The naive guess implies

m(p) = dimRp=Ip = 3:



However:A Gr�obner basis aluluationshows that the image surfaeS � P3 has degree 5.
Consequene:Sine n = 3, the DegreeFormula gives

32 = 5 � 1+m(p);
so that

m(p) = 4
in this ase.



Serre's De�nition
R loal ring, m maximal ideal.Assume R ontains k = R=m.
Then R-modules M;N with

dimkM 
R N <1
have intersetion multipliity�(M;N) de�ned byXi�0(�1)idimkTorRi (M;N):



Example: B�ezout SituationLet R = OP2;p, M = R=h~fi, N =R=h~gi. Then
0 �! R ~f��! R �!M �! 0

gives
! TorR1 (R;N)! TorR1 (M;N)! N ~f�! N !M 
R N ! 0

However, no ommon omponentimplies
N = R=h~gi ~f��! N = R=h~gi

is one-to-one.



Thus TorRi (M;N) = 0 for i > 0,so that
�(M;N) = dimM 
R N= dimR=h~f ;~gi:

Observations:� ~f;~g form a regular sequenein the ring R.� hs2; st; t2i is not generated bya regular sequene.



Hilbert-Samuel De�nition
Let R, m and k = R=m be asabove and let M be a f.g. R-module. For ` � 0, the Hilbertpolynomial implies that
dimk(M=m`+1M) = ed!`d+ : : :

where d = dimR and e = e(M)is the multipliity of M .
Theorem: If dimR = 0, then

e(R) = dimkR:



Re�nement:Let I be an ideal with msM �IM for some s. Then `� 0 im-plies that
dimk(M=I`+1M) = ~ed!`d+ : : :

~e = e(I;M) is themultipliity ofI in M .
Main Claim:In the Degree Formula,

m(p) = e(Ip; Rp);for Rp = OP2;p and Ip = h~a; : : : ; ~di.



CombinatorialComputation
Let I � k[x1; : : : ; xn℄hx1;:::;xni = Rhave �nite odimension. Then:� The exponents of a monomialbasis of R=I give a �nite setE � Zn�0.� Let C = Conv(Zn�0 n E).This gives the multipliity:
Theorem:

e(I;R) = n! Voln(Rn�0 n C)



Example:I = hs2; st; t2i � k[s; t℄hs;ti hasbasis 1; s; t of R=I. Then

y yy i i ii i i ii i i i ii i i i ii i i i i
������

gives e(I;R) = 2 � shaded area =2 � 2 = 4.
Example:I = hs2; t2i � k[s; t℄hs;ti has thesame multipliity.



Algebrai Computation
Assume ms � I � R, where R =regular loal ring of dimension n.Then:� If ms � J � I � R, then

e(J;R) � e(I;R):
� If in addition I`J = I`+1, then

e(J;R) = e(I;R):
J is a redution ideal of I.



� If I is generated by a regularsequene, then
e(I;R) = dimkR=I

I is a omplete intersetion.
Two Important Fats:� I has a redution ideal whihis generated by a reg. seq.� The reg. seq. an be hosento be generi linear ombina-tions of the generators of I.



Consequene of First Fat:
e(I;R) = mindimkR=J;

where the minimum is taken overall omplete intersetion ideals Jontained in I.
This follows beause
e(I;R) � e(J;R) = dimkR=J

holds for any CI ideal ontainedin I and beause (by the �rstfat) I has a CI redution ideal.



Proof of Degree Formula
For ' : P2�! P3 given by a; b; ; d,we need to prove
n2 = degS � deg'+ Xp2Z e(Ip; Rp)
for Rp = OP2;p and Ip = h~a; : : : ; ~di.
Pik a generi line ` � P2. Then

degS =#S \ `:



We an assume:� ` meets S at smooth points.� ` meets S transversely.� ' is �etale above these points.
For oordinates x; y; z; w on P3,let ` = H1 \H2for H1 : �1x+ � � �+�4w = 0 andH2 : �1x+ � � �+ �4w = 0. Then,on P2, onsider the urvesC : f = �1a+ � � �+ �4d = 0D : g = �1a+ � � �+ �4d = 0:



Sine Z is the basepoint lous ofa; b; ; d, we have
C \D = '�1(S \ `) [ Z:

By B�ezout's Theorem,
n2 = degS � deg'+ Xp2Z dimkOP2;p=h~f;~gi:

However, the seond importantfat implies that ~f;~g generate aredution ideal for Ip. Thuse(Ip; Rp) = dimkOP2;p=h~f;~giand the theorem is proved!



Another Proof
We will use Fulton's IntersetionTheory. By p. 79, the Segrelass of Z � P2 is the 0-yle

s(Z;P2) = Xp2Z e(Ip; Rp)[p℄:
Then Prop. 4.4 implies
degS � deg' = ZP2 1(L)2� ZZ(1 + 1(L))2 \ s(Z;P2)

where L = OP2(n). Then we aredone sine Z has dimension 0!



The Rees Ring
This is the graded ringR+(I) = 1Mi=0 IitiThen setfR = R+(I)=mR+(I):This is graded and �nitely generatedover k = R=m. One an show thatdim fR = dimR, whih we denote n.
By graded Noether normalization, thereare generi ~s1; : : : ;~sn 2 I=mI suh thatfR is a f. g. module over k[~s1; : : : ;~sn℄.



One an show:� R+(I) is �nitely generated overR[s1; : : : ; sn℄.� s1; : : : ; sn are a regular sequene.We may assume that the si are generilinear ombinations of generators.
Now suppose that u1; : : : ; uN generateR+(I) over R[s1; : : : ; sn℄. Set` = maxdegree of u1; : : : ; uN :Then one an easily show thatI`+1 = hs1; : : : ; sniI`:See Setion 4.5 of Cohen-MaaulayRings by Bruns and Herzog for details.


