What is the

Multiplicity of

a Base Point?

David A. Cox
Amherst College

Outline

- Bézout's Theorem
- Degree of a Rational Surface
- Serre's Definition
- Hilbert-Samuel Definition
- Combinatorial Computation
- Algebraic Computation
- Proof of Degree Formula
- Other Stuff (Time Permitting)

Bézout's Theorem

Suppose that $C, D \subset \mathbf{P}^{2}$ are curves of degrees n, m with no common components. Then

$$
n m=\sum_{p \in C \cap D} I_{p}(C, D)
$$

where

$$
I_{p}(C, D)=\operatorname{dim} \mathcal{O}_{\mathbf{P}^{2}, p} /\langle\tilde{f}, \tilde{g}\rangle
$$

and \tilde{f}, \tilde{g} are local equations of C, D near p.

Degree of a Rational Surface

$\varphi: \mathbf{P}^{2} \longrightarrow \mathbf{P}^{3}$ is defined by a, b, c, d of degree n, no common factors.

- $Z=\{p \mid a(p)=\cdots=0\}$ is the
base point locus.
- $S=\overline{\varphi\left(\mathbf{P}^{2} \backslash Z\right)}$ is the image.

We assume $\operatorname{dim} S=2$.

Degree Formula:

$$
n^{2}=\operatorname{deg} S \cdot \operatorname{deg} \varphi+\sum_{p \in Z} m(p) .
$$

$m(p)$ is the "multiplicity" of p.

Naive guess:

$m(p)=\operatorname{dim} \mathcal{O}_{\mathbf{P}^{2}, p} / I_{p}=\operatorname{dim} R_{p} / I_{p}$,
where $I_{p}=\langle\widetilde{a}, \ldots, \widetilde{d}\rangle$

Counterexample:
$a=s^{2} u+t^{3}, b=t^{2} u+s^{3}$,
$c=s t u, d=s^{2} u$ gives φ
with basepoint $p=(0,0,1)$
and $I_{p}=\left\langle s^{2}, s t, t^{2}\right\rangle$.

The naive guess implies

$$
m(p)=\operatorname{dim} R_{p} / I_{p}=3
$$

However:

A Gröbner basis calculation shows that the image surface $S \subset \mathbf{P}^{3}$ has degree 5 .

Consequence:
Since $n=3$, the Degree Formula gives

$$
3^{2}=5 \cdot 1+m(p),
$$

so that

$$
m(p)=4
$$

in this case.

Serre's Definition

R local ring, m maximal ideal.
Assume R contains $k=R / m$.

Then R-modules M, N with

$$
\operatorname{dim}_{k} M \otimes_{R} N<\infty
$$

have intersection multiplicity $\chi(M, N)$ defined by

$$
\sum_{i \geq 0}(-1)^{i} \operatorname{dim}_{k} \operatorname{Tor}_{i}^{R}(M, N)
$$

Example: Bézout Situation

 Let $R=\mathcal{O}_{\mathbf{P}^{2}, p}, M=R /\langle\tilde{f}\rangle, N=$ $R /\langle\tilde{g}\rangle$. Then$$
0 \longrightarrow R \xrightarrow{\tilde{f}} R \longrightarrow M \longrightarrow 0
$$

gives

$$
\begin{aligned}
& \rightarrow \operatorname{Tor}_{1}^{R}(R, N) \rightarrow \operatorname{Tor}_{1}^{R}(M, N) \\
& \quad \rightarrow N \xrightarrow{\tilde{f}} N \rightarrow M \otimes_{R} N \rightarrow 0
\end{aligned}
$$

However, no common component implies

$$
N=R /\langle\tilde{g}\rangle \xrightarrow{\tilde{f}} N=R /\langle\tilde{g}\rangle
$$

is one-to-one.

Thus $\operatorname{Tor}_{i}^{R}(M, N)=0$ for $i>0$, so that

$$
\begin{aligned}
\chi(M, N) & =\operatorname{dim} M \otimes_{R} N \\
& =\operatorname{dim} R /\langle\tilde{f}, \tilde{g}\rangle .
\end{aligned}
$$

Observations:

- \tilde{f}, \tilde{g} form a regular sequence in the ring R.
- $\left\langle s^{2}, s t, t^{2}\right\rangle$ is not generated by a regular sequence.

Hilbert-Samuel Definition

Let R, m and $k=R / m$ be as above and let M be a f.g. R module. For $\ell \gg 0$, the Hilbert polynomial implies that

$$
\operatorname{dim}_{k}\left(M / m^{\ell+1} M\right)=\frac{e}{d!} \ell^{d}+\ldots
$$

where $d=\operatorname{dim} R$ and $e=e(M)$ is the multiplicity of M.

Theorem: If $\operatorname{dim} R=0$, then

$$
e(R)=\operatorname{dim}_{k} R .
$$

Refinement:

Let I be an ideal with $m^{s} M \subset$ $I M$ for some s. Then $\ell \gg 0$ mmplies that

$$
\operatorname{dim}_{k}\left(M / I^{\ell+1} M\right)=\frac{\tilde{e}}{d!} \ell^{d}+\ldots
$$

$\tilde{e}=e(I, M)$ is the multiplicity of I in M.

Main Claim:

In the Degree Formula,

$$
m(p)=e\left(I_{p}, R_{p}\right)
$$

for $R_{p}=\mathcal{O}_{\mathbf{P}^{2}, p}$ and $I_{p}=\langle\tilde{a}, \ldots, \tilde{d}\rangle$.

Combinatorial Computation

Let $I \subset k\left[x_{1}, \ldots, x_{n}\right]_{\left\langle x_{1}, \ldots, x_{n}\right\rangle}=R$ have finite codimension. Then:

- The exponents of a monomial basis of R / I give a finite set $E \subset \mathbf{Z}_{\geq 0}^{n}$.
- Let $C=\operatorname{Conv}\left(\mathbf{Z}_{\geq 0}^{n} \backslash E\right)$.

This gives the multiplicity:

Theorem:

$$
e(I, R)=n!\operatorname{Vol}_{n}\left(\mathbf{R}_{\geq 0}^{n} \backslash C\right)
$$

Example:

$I=\left\langle s^{2}, s t, t^{2}\right\rangle \subset k[s, t]_{\langle s, t\rangle}$ has
basis $1, s, t$ of R / I. Then

gives $e(I, R)=2 \cdot$ shaded area $=$ $2 \cdot 2=4$.

Example:

$I=\left\langle s^{2}, t^{2}\right\rangle \subset k[s, t]_{\langle s, t\rangle}$ has the same multiplicity.

Algebraic Computation

Assume $m^{s} \subset I \subset R$, where $R=$ regular local ring of dimension n. Then:

- If $m^{s} \subset J \subset I \subset R$, then

$$
e(J, R) \geq e(I, R)
$$

- If in addition $I^{\ell} J=I^{\ell+1}$, then

$$
e(J, R)=e(I, R)
$$

J is a reduction ideal of I.

- If I is generated by a regular sequence, then

$$
e(I, R)=\operatorname{dim}_{k} R / I
$$

I is a complete intersection.

Two Important Facts:

- I has a reduction ideal which
is generated by a reg. seq.
- The reg. seq. can be chosen to be generic linear combinations of the generators of I.

Consequence of First Fact:

$$
e(I, R)=\min \operatorname{dim}_{k} R / J
$$

where the minimum is taken over all complete intersection ideals J contained in I.

This follows because

$$
e(I, R) \leq e(J, R)=\operatorname{dim}_{k} R / J
$$

holds for any CI ideal contained in I and because (by the first fact) I has a CI reduction ideal.

Proof of Degree Formula

For $\varphi: \mathbf{P}^{2}-\longrightarrow \mathbf{P}^{3}$ given by a, b, c, d, we need to prove
$n^{2}=\operatorname{deg} S \cdot \operatorname{deg} \varphi+\sum_{p \in Z} e\left(I_{p}, R_{p}\right)$
for $R_{p}=\mathcal{O}_{\mathbf{P}^{2}, p}$ and $I_{p}=\langle\tilde{a}, \ldots, \tilde{d}\rangle$.

Pick a generic line $\ell \subset \mathbf{P}^{2}$. Then $\operatorname{deg} S=\# S \cap \ell$.

We can assume:

- ℓ meets S at smooth points.
- ℓ meets S transversely.
- φ is étale above these points.

For coordinates x, y, z, w on \mathbf{P}^{3}, let

$$
\ell=H_{1} \cap H_{2}
$$

for $H_{1}: \alpha_{1} x+\cdots+\alpha_{4} w=0$ and $H_{2}: \beta_{1} x+\cdots+\beta_{4} w=0$. Then, on \mathbf{P}^{2}, consider the curves

$$
\begin{aligned}
& C: f=\alpha_{1} a+\cdots+\alpha_{4} d=0 \\
& D: g=\beta_{1} a+\cdots+\beta_{4} d=0
\end{aligned}
$$

Since Z is the basepoint locus of a, b, c, d, we have

$$
C \cap D=\varphi^{-1}(S \cap \ell) \cup Z
$$

By Bézout's Theorem,

$$
\begin{aligned}
n^{2}= & \operatorname{deg} S \cdot \operatorname{deg} \varphi \\
& +\sum_{p \in Z} \operatorname{dim}_{k} \mathcal{O}_{\mathbf{P}^{2}, p} /\langle\tilde{f}, \tilde{g}\rangle
\end{aligned}
$$

However, the second important fact implies that \tilde{f}, \tilde{g} generate a reduction ideal for I_{p}. Thus

$$
e\left(I_{p}, R_{p}\right)=\operatorname{dim}_{k} \mathcal{O}_{\mathbf{P}^{2}, p} /\langle\tilde{f}, \tilde{g}\rangle
$$

and the theorem is proved!

Another Proof

We will use Fulton's Intersection Theory. By p. 79, the Segre class of $Z \subset \mathbf{P}^{2}$ is the 0 -cycle

$$
s\left(Z, \mathbf{P}^{2}\right)=\sum_{p \in Z} e\left(I_{p}, R_{p}\right)[p] .
$$

Then Prop. 4.4 implies

$$
\begin{aligned}
& \operatorname{deg} S \cdot \operatorname{deg} \varphi=\int_{\mathbf{P}^{2}} c_{1}(L)^{2} \\
& \quad-\int_{Z}\left(1+c_{1}(L)\right)^{2} \cap s\left(Z, \mathbf{P}^{2}\right)
\end{aligned}
$$

where $L=\mathcal{O}_{\mathbf{P}^{2}}(n)$. Then we are done since Z has dimension 0 !

The Rees Ring

This is the graded ring

$$
R_{+}(I)=\bigoplus_{i=0}^{\infty} I^{i} t^{i}
$$

Then set

$$
\widetilde{R}=R_{+}(I) / m R_{+}(I)
$$

This is graded and finitely generated over $k=R / m$. One can show that $\operatorname{dim} \widetilde{R}=\operatorname{dim} R$, which we denote n.

By graded Noether normalization, there are generic $\tilde{s}_{1}, \ldots, \tilde{s}_{n} \in I / m I$ such that \widetilde{R} is a f. g. module over $k\left[\widetilde{s}_{1}, \ldots, \tilde{s}_{n}\right]$.

One can show:

- $R_{+}(I)$ is finitely generated over $R\left[s_{1}, \ldots, s_{n}\right]$.
- s_{1}, \ldots, s_{n} are a regular sequence.

We may assume that the s_{i} are generic linear combinations of generators.

Now suppose that u_{1}, \ldots, u_{N} generate $R_{+}(I)$ over $R\left[s_{1}, \ldots, s_{n}\right]$. Set

$$
\ell=\max \text { degree of } u_{1}, \ldots, u_{N} .
$$

Then one can easily show that

$$
I^{\ell+1}=\left\langle s_{1}, \ldots, s_{n}\right\rangle I^{\ell}
$$

See Section 4.5 of Cohen-Macaulay Rings by Bruns and Herzog for details.

