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Bézout’'s T heorem

Suppose that C, D C P< are curves
of degrees n, m with no common

components. Then

nm= Y Ip(C,D)
peCND

where
I(C, D) = dim Op2_ /(f,9)

and f,g are local equations of

C,D near p.



Degree of a Rational
Surface

o : P2—— P3is defined by a, b, ¢,d

of degree n, no common factors.

o Z/ ={p|a(p) =---= 0} is the
base point locus.

e S=¢(P?\ Z) is the image.

We assume dim § = 2.

Degree Formula:

n? =degS-degp+ 3 m(p).
peEL

m(p) is the “multiplicity” of p.



Naive guess:

~

where I, = (a,...,d)

Counterexample:

a = 82u+t3, b=t2u—|—s3,
24 gives o
with basepoint p = (0,0,1)

and I, = (s, st, t°).

c=stu, d=s

The nailve guess implies

m(p) = dim Ry,/I, = 3.



However:

A Grobner basis calculuation
shows that the image surface
S C P3 has degree 5.

Consequence:
Since n = 3, the Degree
Formula gives

3° =5-1+m(p),
so that
m(p) = 4

IN this case.



Serre’s Definition

R local ring, m maximal ideal.

Assume R contains kK = R/m.

Then R-modules M, N with
dlmkM(X)RN < 0

have intersection multiplicity
x(M, N) defined by

Y (—1)*dimg Torf¥(M, N).
1>0



Example: Bézout Situation

Let R = OPQP, M= R/{f), N =
R/{g). Then

~

O—>RL>R—>M—>O

gives

— Torf' (R, N) — Tor{!(M, N)

“NL NS MesN =0

However, N0 common component
Implies

~

N = R/(§) -1 N = R/(5)

IS one-to-one.



Thus Torfi(M,N) = 0 for i > 0,
so that

x(M,N) =dimM @p N
= dim R/(f, ).

Observations:

e { g form a regular sequence
In the ring R.

o (s2,st,t2) is not generated by

a regular sequence.



Hilbert-Samuel Definition

Let R, m and £ = R/m be as
above and let M be a f.g. R-
module. For ¢ > 0, the Hilbert
polynomial implies that

dim,(M/mt1M) = ;Ied+ .

where d = dimR and e = e(M)
IS the multiplicity of M.

Theorem: If dim R = 0, then

e(R) = dim,, R.



Refinement:

Let I be an ideal with m°M C
IM for some s. Then £> 0 im-
plies that

dim, (M/ It M) = ;Izd+ .
e = e(I, M) is the multiplicity of
I in M.

Main Claim:
In the Degree Formula,

m(p) = e(Ip, Rp),

for Ry = Op2  and Ip = (@,...,d).



Combinatorial
Computation

Let I C kl[xq,... ’xn]<3717---733n> — R

have finite codimension.

hen:

e [ he exponents of a monomial
basis of R/I give a finite set

ECZ%,

o Let C = Conv(Z%,\ E).

This gives the multiplicity:

T heorem.:

e(I,R) = n!'Volp(RZg \ C)



Example:
I = (s2, st,t%) C k[s,t]<s,t> has
basis 1,s,t of R/I. Then

q
q
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5

gives e(I, R) = 2 -shaded area =
2-2=4,

Example:
I = (s%,t%) C k[s,t](5 has the
same multiplicity.



Algebraic Computation

Assume m® C I C R, where R =
regular local ring of dimension n.
Then:

o IfmM°C JCICR, then

e(J,R) >e(l,R).
e If in addition ItJ = I¢t1, then
e(J,R) =e(l,R).

J is a reduction ideal of I.



e If I is generated by a regular

sequence, then
e(I,R) =dim, R/I

I is a complete intersection.

Two Important Facts:

e / has a reduction ideal which
IS generated by a reg. seq.

e [ he reg. seq. can be chosen
to be generic linear combina-

tions of the generators of I.



Consequence of First Fact:
e(I,R) = mindimg R/J,

where the minimum is taken over
all complete intersection ideals J

contained in I.

T his follows because
e(I,R) <e(J,R) =dimpR/J

holds for any CI ideal contained
in I and because (by the first
fact) I has a CI reduction ideal.



Proof of Degree Formula

For ¢ : P2—— P3 given by a, b, ¢, d,

we need to prove

n®=degS- -degp+ ¥ e(lp, Rp)
peEZs

~

Pick a generic line £ C P2. Then

deg S = #SNV.



We can assume:

e / meets § at smooth points.
e / meets S transversely.

e © IS étale above these points.

For coordinates z,y,z,w on P3,
let

¢ = Hi1NH>

for H1 . vz +---+ agqw = 0 and
Ho :Bix <+ -4+ Baw = 0. Then,
on P2, consider the curves

C.f=aja+ ---+asd=0
D:g=pia+- -+ B4d = 0.



Since Z is the basepoint locus of
a,b,c,d, we have

CNnD=ye SNk ULZ.
By Bézout's Theorem,

n2=degS-deggo

T ng dimg OP27P/<JC7 g)-

However, the second important
fact implies that f,§ generate a
reduction ideal for I,. Thus

e(Ip, Rp) = dimy, OP27P/<JF7 g)

and the theorem is proved!



Another Proof

We will use Fulton’s Intersection
Theory. By p. 79, the Segre
class of Z ¢ P2 is the 0-cycle

s(Z,P?) = Y e(Ip, Rp)[p).
pes

Then Prop. 4.4 implies

deg S -degp = /P2 c1(L)?
~ [;(1 +c1(L))? N s(Z,P?)

where L = Og2(n). Then we are
done since Z has dimension Ol



The Rees RINg

This is the graded ring
0 ..
R_|_(I) = P I't
=0
Then set

R= R, (I)/mRy(I).

This is graded and finitely generated
over k = R/m. One can show that

dim R = dim R, which we denote n.

By graded Noether normalization, there
are generic s1,...,8p € I/mlI such that

R is a f. g. module over k[31,...,3n].



One can show:

o Ry (1) is finitely generated over
R[s1,...,sn].

® s1,...,Sp are a regular sequence.

We may assume that the s; are generic

linear combinations of generators.

Now suppose that uq,...,uy generate
R4 (I) over R[sy,...,sn]. Set
¢ = maxdegree of uy,...,uy.
Then one can easily show that
I = (sq,...,sp) It

See Section 4.5 of Cohen-Macaulay
Rings by Bruns and Herzog for details.



