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2 David A. CoxA
knowledgementsThese notes are intended to help students make the transition between the elementary as-pe
ts of algebrai
 geometry (varieties in aÆne and proje
tive spa
e, et
.) and some of its moresophisti
ated aspe
ts (normal varieties, Weil and Cartier divisors, et
.).The material presented here is taken from the notes prepared for the 
ourse on tori
 varietiesgiven at the Summer S
hool on The Geometry of Tori
 Varieties held in Grenoble in 2000. Iam grateful to Laurent Bonavero and Mi
hel Brion for inviting me to parti
ipate in the SummerS
hool. Their 
omments (and those of Gottfried Barthel and the other parti
ipants) are greatlyappre
iated. I also thank Henning �Ulfarsson for pointing out some typos to �x.x1. AÆne VarietiesBasi
 De�nitions. For simpli
ity, we will work over the 
omplex numbers C . Then, given poly-nomials f1; : : : ; fs 2 C [x1; : : : ; xn℄, we get the aÆne varietyV(f1; : : : ; fs) = fa 2 C n j f1(a) = � � � = fs(a) = 0g:More generally, if I � C [x1; : : : ; xn℄ is an ideal, then we de�neV(I) = fa 2 C n j f(a) = 0 for all f 2 Ig:Exer
ise 1.1. Let I = hf1; : : : ; fsi � C [x1; : : : ; xn℄ be the ideal generated by f1; : : : ; fs. Show thatV(I) = V(f1; : : : ; fs). (All ideals in C [x1; : : : ; xn℄ are of this form by the Hilbert Basis Theorem.)Conversely, given an aÆne variety V � C n, we get the idealI(V ) = ff 2 C [x1; : : : ; xn℄ j f(a) = 0 for all a 2 V g:Exer
ise 1.2. Let V � C n be an aÆne variety and I � C [x1; : : : ; xn℄ an ideal. Show that:a. V = V(I(V )).b. I � pI � I(V(I)), where pI = ff 2 C [x1; : : : ; xn℄ j fm 2 I; m � 1g is the radi
al of I.The above exer
ise a
tually works over any �eld. But sin
e C is algebrai
ally 
losed, we alsohave the following basi
 result of Hilbert.Hilbert Nullstellensatz. For any ideal I � C [x1; : : : ; xn℄, we have pI = I(V(I)).A proof 
an be found in Chapter 4 of [3℄. This theorem allows us to translate algebra intogeometry and vi
e versa. Here is an example.Exer
ise 1.3. Use the Nullstellensatz to show the following.a. Every maximal ideal of C [x1; : : : ; xn℄ is of the form hx1�a1; : : : ; xn�ani, where ai 2 C . Thusthere is a one-to-one 
orresponden
e between points of C n and maximal ideals of C [x1; : : : ; xn℄.b. An ideal I is radi
al if I = pI. Show that the 
orresponden
e of part a extends to a one-to-one
orresponden
e aÆne varieties of C n  ! radi
al ideals of C [x1; : : : ; xn℄:



Introdu
tion to Algebrai
 Geometry 3Coordinate Rings. We next 
onsider polynomial fun
tions on an aÆne variety V . Note that twopolynomials f; g 2 C [x1; : : : ; xn℄ give the same fun
tion on V if and only if their di�eren
e lies inI(V ). Thus the ring of su
h fun
tions is naturally isomorphi
 to the quotient ringC [V ℄ = C [x1; : : : ; xn℄=I(V ):This ring is 
alled the 
oordinate ring of V . There is a 
lose relation between V and C [V ℄. Thefollowing two exer
ises explore aspe
ts of this relation.Exer
ise 1.4. Two aÆne varieties V1 � C n and V2 � C m are isomorphi
 if there are polynomialmaps F : C n ! C m and G : C m ! C n su
h that F (V1) = V2, G(V2) = V1, and the 
ompositionsF ÆG and G Æ F are the identity when restri
ted to V2 and V1 respe
tively. Prove that two aÆnevarieties are isomorphi
 if and only if their 
oordinate rings are isomorphi
 C -algebras.Exer
ise 1.5. Let V � C n be an aÆne variety.a. Given a = (a1; : : : ; an) 2 C n, show that a 2 V if and only if I(V ) � hx1 � a1; : : : ; xn � ani.b. Con
lude that there is a one-to-one 
orresponden
e between points of aÆne variety V andmaximal ideals of its 
oordinate ring C [V ℄.We 
an 
hara
terize 
oordinate rings of aÆne varieties as follows.Proposition 1.1. A C -algebra R is isomorphi
 to the 
oordinate ring of an aÆne variety if andonly if R is a �nitely generated C -algebra with no nonzero nilpotents (i.e., if f 2 R satis�es fm = 0,then f = 0).Proof. If R = C [V ℄ for V � C n, then we need only show that R has no nonzero nilpotents. Thisis easy, for if f 2 C [x1; : : : ; xn℄ and fm vanishes on V , then so does f . Thus I(V ) is radi
al, whi
hmeans that C [V ℄ = C [x1; : : : ; xn℄=I(V ) has no nonzero nilpotents.Conversely, R �nitely generated as a C -algebra implies that there is a surje
tive homomorphism' : C [x1; : : : ; xn℄ ! R. Let I = ker', and note that I = pI sin
e R has no nonzero nilpotents.Then let V = V(I) � C n. The 
oordinate ring of V is C [x1; : : : ; xn℄=I(V ). Using the Nullstellensatz,we see that I(V ) = I(V(I)) = pI = I. Thus C [V ℄ is isomorphi
 to R.To emphasize the 
lose relation between V and C [V ℄, we will sometimes write(1:1) V = Spe
(C [V ℄):Furthermore, this 
an be made 
anoni
al by identifying V with the set of maximal ideals of C [V ℄via Exer
ise 1.5. This is part of a general 
ontru
tion in algebrai
 geometry whi
h takes any
ommutative ring R and de�nes the aÆne s
heme Spe
(R). The general de�nition of Spe
 uses allprime ideals of R and not just the maximal ideals as we have done.* Readers wishing to learn moreabout s
hemes should 
onsult [4℄ and [5℄.Subvarieties and the Zariski Topology. Given an aÆne variety V � C n, a subset W � V isa subvariety if W is also an aÆne variety. This easily implies that I(V ) � I(W ). In terms of the
oordinate ring R = C [V ℄, we 
on
lude that there is a one-to-one 
orresponden
esubvarieties of Spe
(R) ! radi
al ideals of R:* Thus (1.1) should be written V = Spe
m(C [V ℄), the maximal spe
trum of C [V ℄.



4 David A. CoxAn aÆne variety has two interesting topologies. First, we have the indu
ed topology from theusual topology on C n. This is sometimes 
alled the 
lassi
al topology . The other topology is de�nedas follows. Given a subvariety W � V , the 
omplement V �W is 
alled a Zariski open subset ofV . One easily sees that the Zariski open subsets of V form a topology on V , whi
h is 
alled theZariski topology . Sin
e every subvariety of V is 
losed in the 
lassi
al topology (polynomials are
ontinuous), it follows that every Zariski open subset is also open in the 
lassi
al topology.Exer
ise 1.6. Zariski open subsets tend to be large. Here are some examples.a. Show that the Zariski topology on C is the 
o�nite topology. This is the topology whose opensets are ; and 
omplements of �nite sets.b. Show that the Zariski topology on C n is T1 but not T2.Given a subset S � V , its 
losure S in the Zariski topology is the smallest subvariety of V
ontaining S. We 
all S the Zariski 
losure of S. It is easy to give examples where this di�ers fromthe 
losure in the 
lassi
al topology.Finally, we remark that some Zariski open subsets of an aÆne variety V are themselves aÆnevarieties. Given f 2 C [V ℄� f0g, let Vf = fa 2 V j f(a) 6= 0g � V .Lemma 1.2. Vf is Zariski open in V and has a natural stru
ture as an aÆne variety.Proof. Suppose V � C n and I(V ) = hf1; : : : ; fsi. Also pi
k g 2 C [x1; : : : ; xn℄ so that f = g+I(V ).Then Vf = V �V(f1; : : : ; fs; g), so that Vf is Zariski open in V .Consider a new variable y and letW = V(f1; : : : ; fs; 1�gy) � C n�C . Then (a; b) 2 C n�C liesinW if and only if a 2 Vf (and then b = 1=g(a)). In other words, the proje
tion map C n�C ! C nmaps W bije
tively to Vf . Thus we 
an identify Vf with the aÆne variety W � C n � C .Irredu
ible Varieties and Rational Fun
tions. An aÆne variety V is irredu
ible if it 
annotbe written as union of subvarieties V = V1 [ V2 where Vi 6= V . We 
an think of irredu
bility inalgebrai
 terms as follows.Exer
ise 1.7. Let V � C n be an aÆne variety. Prove that V is irredu
ible, I(V ) � C [x1; : : : ; xn℄is a prime ideal , the 
oordinate ring C [V ℄ is an integral domain.Here is an example we will refer to later.Exer
ise 1.8. Let V = V(xy � zw) � C 4.a. Show that xy � zw is irredu
ible in C [x; y; z; w℄.b. Con
lude that I(V ) = hxy � zwi and that V is irredu
ible. Thus the 
oordinate ring of V isC [V ℄ = C [x; y; z; w℄=hxy � zwi.
. Prove that C [V ℄ ' C [ab; 
d; a
; bd℄ � C [a; b; 
; d℄. Hint: Prove that V 
an be parametrizedsurje
tively by (a; b; 
; d) 7! (ab; 
d; a
; bd).When V is irredu
ible, the integral domain C [V ℄ has a �eld of fra
tions denoted C (V ). Thisis the �eld of rational fun
tions on V . For example, when V = C n, C [V ℄ is the polynomial ringC [x1; : : : ; xn℄ and C (V ) is the �eld of rational fun
tions C (x1; : : : ; xn). In general, given f=g 2 C (V ),the equation g = 0 de�nes a proper subvariety W � V and f=g : V �W ! C is a well-de�nedfun
tion. This is written f=g : V�! C and is 
alled a rational fun
tion on V .Exer
ise 1.9. If V is irredu
ible and f 2 C [V ℄ is nonzero, then the lo
alization of C [V ℄ at f isC [V ℄f = fg=f ` 2 C (V ) j g 2 C [V ℄; ` � 0g:



Introdu
tion to Algebrai
 Geometry 5Prove that Spe
(C [V ℄f ) is the aÆne variety Vf from Lemma 1.2.An important result is that every aÆne variety V 
an be written as a unionV = V1 [ � � � [ Vrwhere ea
h Vi is irredu
ible and Vi 6� Sj 6=i Vj . We 
all V1; : : : ; Vr the irredu
ible 
omponents of V .The existen
e and uniqueness of this de
omposition is proved in Chapter 4 of [3℄.Finally, some referen
es use di�erent terminology. For example, in Hartshorne's book [5℄,V(I) � C n is 
alled an \algebrai
 set" and the term \aÆne variety" is reserved for the 
ase whenV(I) is irredu
ible. We will not use this terminology, though we should point out that our mainobje
ts of interest are tori
 varieties, whi
h are by de�nition irredu
ible.Normal AÆne Varieties. Let R be an integral domain with �eld of fra
tions K. Then R isintegrally 
losed if every element of K whi
h is integral over R (meaning that it is a root of a moni
polynomial in R[x℄) a
tually lies in R. Here are two examples:� One 
an easily show that any UFD is integrally 
losed.� The set OK of all algebrai
 integers in a number �eld K is integrally 
losed.Exer
ise 1.10 below will give an example of an integral domain whi
h is not integrally 
losed.Let V be an irredu
ible aÆne variety, so that C [V ℄ is an integral domain. Then V is normalif C [V ℄ is integrally 
losed. For example, C n is normal sin
e its 
oordinate ring C [x1; : : : ; xn℄ is aUFD and hen
e integrally 
losed. Here is an example of a non-normal aÆne variety.Exer
ise 1.10. Let C = V(x3 � y2) � C 2. This is a plane 
urve with a 
usp at the origin.a. Show that C is irredu
ible and that C [C℄ = C [x; y℄=hx3 � y2i.b. Let X and Y be the 
osets of x and y in C [C℄ respe
tively. This gives Y=X 2 C (C). Showthat Y=X =2 C [C℄ and that (Y=X)2 = X.
. Explain why part b implies that C [C℄ is not integrally 
losed.Another example is the irredu
ible variety V = V(xy � zw) � C 4 studied in Exer
ise 1.8. Itis not obvious, but V is normal. This 
an be proved using the des
riptionC [V ℄ ' C [ab; 
d; a
; bd℄ � C [a; b; 
; d℄given in part 
 of Exer
ise 1.8. The ring C [ab; 
d; a
; bd℄ is a semigroup algebra. Then normalityfollows from a property 
alled saturation.For us, normality is 
ru
ial be
ause tori
 varieties are all normal. (One 
an de�ne non-normaltori
 varieties, but the ni
est results hold only in the normal 
ase.)Finally, any irredu
ible aÆne variety V has a normalization. To de�ne this, �rst 
onsiderC [V ℄0 = f� 2 C (V ) : � is integral over C [V ℄g:We 
all C [V ℄0 the integral 
losure of C [V ℄. It is easy to see that C [V ℄0 is integrally 
losed. Withmore work, one 
an also show that C [V ℄0 is a �nitely generated C -algebra (see Theorem 9 onpages 267{268 of [11℄). This gives the normal aÆne varietyV 0 = Spe
(C [V ℄0)whi
h is the normalization of V . Note that the natural in
lusion C [V ℄ � C [V ℄0 = C [V 0℄ 
orrespondsto a map V 0 ! V . This is 
alled the normalization map.



6 David A. CoxExer
ise 1.11. Let C = V(x3 � y2) � C 2 be the 
urve 
onsidered in Exer
ise 1.10.a. Let X and Y have the same meaning as in Exer
ise 1.10. Show that C [Y=X℄ � C (C) is theintegral 
losure of C [C℄.b. Show that the normalization map is the map C ! C de�ned by t 7! (t2; t3).x2. Proje
tive VarietiesProje
tive Spa
e. We de�ne n-dimensional proje
tive spa
e to be the setPn = (C n+1 � f0g)=�;where � is the equivalen
e relation on C n+1 � f0g given by(2:1) (a0; : : : ; an) � (b0; : : : ; bn) () there is � 2 C � with (a0; : : : ; an) = �(b0; : : : ; bn):Here, we use C � to denote C �f0g, whi
h is a group under multipli
ation. As we vary � 2 C �, thepoints �(b0; : : : ; bn) lie on a line through the origin. Thus we get a bije
tionPn ' flines through the origin in C n+1g:Exer
ise 2.1. Pn 
ontains the subset (C �)n+1= �. Note also that (C �)n+1 is a group under
omponent-wise multipli
ation.a. Show that on (C �)n+1, the equivalen
e 
lasses of � are the 
osets of the subgroup H =f(�; : : : ; �) j � 2 C �g � (C �)n+1. Con
lude that (C �)n+1=H � Pn.b. Constru
t a group isomorphism (C �)n+1=H ' (C �)n.Exer
ise 2.1 shows that Pn 
ontains an isomorphi
 
opy of (C �)n. Pn is a 
lassi
 example of atori
 variety.We note that Pn has a 
lassi
al topology inherited from the usual topology on C n+1 � f0g.Exer
ise 2.2. Let S2n+1 be the unit (2n+ 1)-sphere 
entered at the origin in C n+1.a. Show that the natural map S2n+1 ! Pn is onto and 
on
lude that Pn is 
ompa
t.b. Show that the �bers of S2n+1 ! Pn are isomorphi
 to S1. This is the Hopf �bration.Homogeneous Coordinates. A point p of Pn will be written (a0; : : : ; an). This is only uniqueup to the equivalen
e relation (2.1). We 
all (a0; : : : ; an) homogeneous 
oordinates of p. In somebooks, this is written p = [a0; : : : ; an℄ or p = (a0 : : : : : an) to emphasize the non-unique nature ofthese 
oordinates. We prefer to write p = (a0; : : : ; an), where it will be 
lear from the 
ontext thatwe are using homogeneous 
oordinates.Proje
tive Varieties and Homogeneous Ideals. A polynomial f 2 C [x0; : : : ; xn℄ is homoge-neous of degree d if every term of f has total degree d. This is equivalent to the identity(2:2) f(�x0; : : : ; �xn) = �df(x0; : : : ; xn):Exer
ise 2.3. Show that any f 2 C [x0; : : : ; xn℄ 
an be written uniquely in the form f =Pd�0 fdwhere fd is homogeneous of degree d. We 
all fd the homogeneous 
omponents of f .



Introdu
tion to Algebrai
 Geometry 7Now suppose that f 2 C [x0; : : : ; xn℄ is homogeneous of degree d. Given p 2 Pn, we 
an't de�ne\f(p)" sin
e using p = (a0; : : : ; an) would givef(p) = f(a0; : : : ; an);while using p = �(a0; : : : ; an) would givef(p) = f(�a0; : : : ; �an) = �df(a0; : : : ; an):However, the equation f(p) = 0 is well-de�ned sin
e � 2 C �. Thus, homogeneous polynomialsf1; : : : ; fs 2 C [x0; : : : ; xn℄ de�ne the proje
tive varietyV(f1; : : : ; fs) = fa 2 Pn j f1(a) = � � � = fs(a) = 0g � Pn:To formulate this in terms of ideals, we say that an ideal I � C [x0; : : : ; xn℄ is homogeneous ifit is generated by homogeneous polynomials.Exer
ise 2.4. Show that an ideal I � C [x0; : : : ; xn℄ is homogeneous if and only if for all f 2C [x0; : : : ; xn℄, we have f 2 I , I 
ontains the homogeneous 
omponents of f .If I � C [x0; : : : ; xn℄ is a homogeneous ideal, then we have the proje
tive varietyV(I) = fa 2 C n j f(a) = 0 for all f 2 Ig:Conversely, given a proje
tive variety V � C n, we get the homogeneous idealI(V ) = ff 2 C [x0; : : : ; xn℄ j f(a) = 0 for all a 2 V g:Exer
ise 2.5. We 
all hx0; : : : ; xni � C [x0; : : : ; xn℄ the irrelevant ideal . Show that V(I) = ;whenever I 
ontains a power of the irrelevant ideal.Exer
ise 2.5 is a
tually part of the proje
tive version of the Nullstellensatz, whi
h goes asfollows. We refer the reader to [3, Chapter 8℄ for a proof.Proje
tive Nullstellensatz. Let I � C [x0; : : : ; xn℄ be a homogeneous ideal.a. V(I) = ; if and only if hx0; : : : ; xnim � I for some m � 0.b. V(I) 6= ; implies I(V(I)) = pI.Most of the 
on
epts de�ned for aÆne varieties in C n 
an be extended to proje
tive varietiesin Pn in the obvious way:� W � V is a subvariety of a proje
tive variety V � Pn if W is a proje
tive variety in Pn.� If V � Pn is a proje
tive variety, then we 
all Pn � V a Zariski open subset of Pn.� The Zariski topology is the topology on Pn whose open sets are the Zariski open sets.� The Zariski 
losure S of a subset S � Pn is the smallest proje
tive variety 
ontaining S.Rational Fun
tions on Proje
tive Spa
e. We've already seen that a homogeneous polynomialin C [x1; : : : ; xn℄ does not give a fun
tion on Pn. However, the quotient of two su
h polynomialsworks, provided they have the same degree. More pre
isely, suppose that f; g 2 C [x1; : : : ; xn℄ havedegree d and that g 6= 0. Then (2.2) shows that we get a well-de�ned fun
tionfg : Pn �V(g) �! C



8 David A. CoxAs in x1, we write this as f=g : Pn�! C and say that f=g is a rational fun
tion on Pn.Exer
ise 2.6. The set of all rational fun
tions on Pn isC (Pn) = nfg j f; g 2 C [x0; : : : ; xn℄ homogeneous of equal degree, g 6= 0o:Prove that C (Pn) is sub�eld of C (x0; : : : ; xn).Mappings Between Proje
tive Varieties. Suppose that V � Pn is a proje
tive variety andf0; : : : ; fm 2 C [x0; : : : ; xn℄ are homogeneous polynomials all of the same degree. Then we say thatf0; : : : ; fm have no base points on V if V \V(f0; : : : ; fm) = ;.Exer
ise 2.7. Suppose that f0; : : : ; fm 2 C [x0; : : : ; xn℄ are homogeneous of degree d and have nobase points on V . Prove that the map (a0; : : : ; an) 7! (f0(a0; : : : ; an); : : : ; fm(a0; : : : ; an)) indu
esa well-de�ned fun
tion F : V �! Pm.An important fa
t is that in the situation of Exer
ise 2.7, the image F (V ) � Pm is a proje
tivesubvariety. When V = Pn, this is proved in [3, Chapter 8℄, and the proof extends easily to 
overthe general 
ase.Exer
ise 2.8. When V � C n is an aÆne variety and F : V ! C m is a polynomial map, theimage F (V ) � C m need not be a subvariety. For example, suppose that V = V(xy � 1) � C 2 andF : V ! C is F (x; y) = x. Prove that F (V ) is not a subvariety of C . The fa
t that F (V ) is asubvariety in the proje
tive 
ase is one reason why proje
tive varieties are so useful in algebrai
geometry.AÆne Open Subsets. We 
an regard Pn as a union of aÆne spa
es as follows. For 0 � i � n,
onsider the Zariski open set Ui = Pn �V(xi).Exer
ise 2.9. As above, Ui = Pn �V(xi) = f(a0; : : : ; an) 2 Pn j ai 6= 0g.a. Show that Ui ' C n via (a0; : : : ; an) 7! (a0=ai; : : : ; ai�1=ai; ai+1=ai; : : : ; an=ai).b. Show that V(xi) ' Pn�1 via (a0; : : : ; an) 7! (a0; : : : ; ai�1; ai+1; : : : ; an).
. Show that Pn = U0 [ � � � [ Un.This exer
ise shows that we 
an regard Pn as C n together with a 
opy of Pn�1 \at in�nity".Also, the open 
over of Exer
ise 2.9 shows that proje
tive varieties are unions of aÆne varieties.Exer
ise 2.10. Let V = V(f1; : : : ; fs) � Pn be a proje
tive variety. Prove that under the map Ui 'C n from Exer
ise 2.9, V \Ui 
orresponds to an aÆne variety de�ned by the vanishing of ~f j , where~fj(x0; : : : ; xi�1; xi+1; : : : ; xn) = fj(x0; : : : ; xi�1; 1; xi+1; : : : ; xn). We 
all ~fj the dehomogenizationof fj with respe
t to xi.Another way to think about Ui ' C n is to use x0=xi; : : : ; xi�1=xi; xi�1=xi; : : : ; xn=xi asvariables on C n. Then the dehomogenization map of Exer
ise 2.10 is just f 7! f=xdi , wheref 2 C [x0; : : : ; xn℄ is homogeneous of degree d. This approa
h preserves rational fun
tions.Exer
ise 2.11. Show that the map f=g 7! (f=xdi )=(g=xdi ) indu
es an isomorphism of �eldsC (Pn) ' C (x0=xi; : : : ; xi�1=xi; xi+1=xi; : : : ; xn=xi);
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 Geometry 9where C (Pn) is the �eld of rational fun
tions de�ned in Exer
ise 2.6.Weighted Proje
tive Spa
e. We next dis
uss a generalization of Pn. Given positive integersq0; : : : ; qn satisfying g
d(q0; : : : ; qn) = 1, we get the weighted proje
tive spa
eP(q0; : : : ; qn) = (C n+1 � f0g)=�;where � is the equivalen
e relation on C n+1 � f0g given by(a0; : : : ; an) � (b0; : : : ; bn) () there is � 2 C � with (a0; : : : ; an) = (�q0b0; : : : ; �qnbn):Obviously P(1; : : : ; 1) = Pn. We will eventually show that P(q0; : : : ; qn) is a tori
 variety. Thefollowing exer
ise shows that P(q0; : : : ; qn) 
ontains a 
opy of (C �)n.Exer
ise 2.12. As above, let q0; : : : ; qn be positive integers with g
d(q0; : : : ; qn) = 1.a. Prove that (C �)n+1= eH � P(q0; : : : ; qn), where eH = f(�q0 ; : : : ; �qn) j � 2 C �g.b. Prove that (C �)n+1= eH ' (C �)n. Hint: Make (q0; : : : ; qn) the �rst 
olumn of a matrix M 2GL(n+ 1;Z) and use M to de�ne an automorphism of (C �)n+1.We 
all q0; : : : ; qn the weights of the weighted proje
tive spa
e. In terms of the polynomialring C [x0; : : : ; xn℄, this means that xi has degree qi, and f 2 C [x0; : : : ; xn℄ is weighted homogeneousof (weighted) degree d if(2:3) f(�q0x0; : : : ; �qnxn) = �df(x0; : : : ; xn):It is then easy to see that we 
an de�ne weighted proje
tive subvarieties in P(q0; : : : ; qn) usingweighted homogeneous polynomials.There are several ways to think about weighted proje
tive spa
es. The following two exer
isesgive two ways to represent P(1; 1; 2).Exer
ise 2.13. Consider P(1; 1; 2) with variables x0; x1; x2 of degrees 1; 1; 2 repse
tively.a. Show that x20; x0x1; x21; x2 are (weighted) homogeneous of degree 2.b. Show that (a0; a1; a2) 7! (a20; a0a1; a21; a2) is a well-de�ned map F : P(1; 1; 2) ! P3.
. Show that the map F of part b is inje
tive and that its image is the surfa
e de�ned by theequation y0y2 � y21 = 0 (where y0; y1; y2; y3 are the 
oordinates of P3).Exer
ise 2.14. Show that (a0; b0; 
0)! (a0; b0; 
20) gives a well-de�ned map P2 ! P(1; 1; 2). Alsoshow that this map is surje
tive and is two-to-one ex
ept above (0; 0; 1) 2 P(1; 1; 2).We 
an also 
over a weighted proje
tive spa
e by aÆne open subsets, though in this 
ase, theopen sets will be aÆne varieties instead of aÆne spa
e C n. Rather than work this out in general,we will restri
t to the 
ase of P(1; 1; 2). Here, we have the Zariski open sets Ui = f(a0; a1; a2) 2P(1; 1; 2) j ai 6= 0g.Exer
ise 2.15. Let U0; U1; U2 be the subsets of P(1; 1; 2) de�ned above.a. Show that U0 ' C 2 via (a; b; 
) 7! (b=a; 
=a2) and U1 ' C 2 via (a; b; 
) 7! (a=b; 
=b2).b. Let V = V(xz � y2) � C 3. Show that U2 ' V via (a; b; 
) 7! (a2=
; ab=
; b2=
).One shows that P(1; 1; 2) is the abstra
t variety obtained by \gluing" two 
opies of C 2 togetherwith the aÆne variety U2 from part 
 of Exer
ise 2.15. But we must �rst understand what \gluing"means.
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t VarietiesThe De�nition of Manifold. To better understand the de�nition of abstra
t variety, we beginby re
alling the de�nition of a C1 n-manifold. Su
h a manifold 
onsists of a se
ond 
ountableHausdor� topologi
al spa
eM together with an open 
over U� and homeomorphisms f� : U� ! V�,where V� � Rn is open, su
h that for every �; �, the 
ompositionf� Æ f�1� : fa(U� \ U�)! f�(U� \ U�)is a di�eomorphism.It turns out that there is a simpler, though more sophisti
ated, way of giving this de�nition.We begin with an open set V � Rn. The sheaf of C1 fun
tions on V , denoted O1V , is de�ned byassigning to ea
h open set U � V the R-algebra(3:1) O1V (U) = ff : U ! R j f is a C1 fun
tiong:More generally, given a topologi
al spa
e X, we say that F is sheaf of R-algebras on X if forevery open set U � X, there is an R-algebra F(U) su
h that:� If V � U are open, then there is an R-algebra homomorphism rUV : F(U)! F(V ).*� rUU is the identity and if W � V � U are open, then rVW Æ rUV = rUW .*� If U = S� U�, where U� is open, then we have an exa
t sequen
e0! F(U)! Y� F(U�) !! Y�;� F(U� \ U�);where the se
ond arrow is the map F(U) ! F(U�) and the double arrows are the mapsF(U�)! F(U� \ U�) and F(U�)! F(U� \ U�).Elements of F(U) are 
alled se
tions of F over U , and when V � U , rUV : F(U) ! F(V ) therestri
tion map. In the third bullet, exa
tness at F(U) means that se
tions of F(U) are determinedlo
ally, i.e., two se
tions are equal if and only if their restri
tions to the U� are equal. Exa
tnessat Q� F(U�) means that 
ompatible se
tions pat
h, i.e., se
tions over the U� whi
h agree on theirinterse
tions 
ome from a se
tion over U .Given a sheaf F and U � X open, the se
tions of F over U 
an be denotedF(U) = �(U;F) = H0(U;F):We will use the �rst of these in this se
tion but will swit
h to the se
ond for x9. When thinking interms of sheaf 
ohomology, one usually uses the third.When F is a sheaf of R-algebras on X, we 
all the pair (X;F) a ringed spa
e over R . Forexample, when V � Rn is open, (3.1) gives a ringed spa
e over R denoted (V;O1V ).Exer
ise 3.1. Complete the following de�nitions:a. The restri
tion F ��U of a sheaf F on X to an open set U � X is de�ned by : : :b. Ringed spa
es (X;F), (Y;G) over R are isomorphi
 if there are a homeomorphism � : X ! Yand, for U � Y open, an R-algebra isomorphism �#U : G(U)! F(��1(U)), su
h that : : :We 
an now reformulate the de�nition of C1 n-manifold.* These two bullets say that F : Open sets of X ! R-Algebras is a 
ontravariant fun
tor.
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ise 3.2. Let n be a positive integer and let (M;OM ) be a ringed spa
e over R . Assume thatevery point in M has a neighborhood U su
h that (U;OM ��U ) is isomorphi
 to (V;O1V ) for someopen subset V � Rn. Prove that M has the stru
ture of a C1 n-manifold.Exer
ise 3.3. Conversely, let M be a C1 n-manifold as de�ned at the beginning of the se
tion.a. Given U �M open, de�ne what it means for f : U ! R to be C1.b. Use the de�nition given in part a to de�ne the sheaf OM of C1 fun
tions on M and show that(M;OM ) is a ringed spa
e over R whi
h satis�es the 
ondition of Exer
ise 2.2.For a C1 n-manifold M , the sheaf OM of Exer
ise 3.3 is 
alled the stru
ture sheaf of M .Exer
ise 3.4. Give sheaf-theoreti
 de�nitions of a Ck n-manifold and a 
omplex n-manifold.The Stru
ture Sheaf of an AÆne Variety. We �rst show that some of the 
onstru
tions forC n given in x1 generalize to an arbitrary aÆne variety V = Spe
(R).Exer
ise 3.5. Let V = Spe
(R) be an aÆne variety.a. Given an ideal I � R, de�ne V(I) � V . Then prove that V(I) is a subvariety of V and thatall subvarieties of V arise in this way.b. Given a subvariety W � V , de�ne I(W ) � R and prove that I(W ) is a radi
al ideal of R.
. Prove the Nullstellensatz, i.e., that I(V(I)) = pI for any ideal I � R.d. Prove the Hilbert Basis Theorem, i.e., that any ideal I � R 
an be written in the formI = hf1; : : : ; fsi, where f1; : : : ; fs 2 R.In x1, we de�ned the Zariski open Vf � V for any f 2 R. Furthermore, when V is irredu
ible,we showed that Vf = Spe
(Rf ), whereRf = fg=fm 2 C (V ) j g 2 R; m � 0gis the lo
alization of R at f , as de�ned in Exer
ise 1.9 of x1.Exer
ise 3.6. Show that the sets Vf form a basis of the Zariski topology of V .The stru
ture sheaf of an irredu
ible aÆne variety V = Spe
(R) is the sheaf of C -algebras inthe Zariski topology de�ned as follows. Given a Zariski open U � V , a fun
tion � : U ! C isregular if for every p 2 V , there is fp 2 R su
h that p 2 Vfp � U and ���Vfp 2 Rfp . ThenOV (U) = f� : U ! C j � is a regular fun
tiong:We will not show that OV is a sheaf of C -algebras|we refer the reader to [4℄ or [5℄ for the detailsof the proof. These referen
es also show how to de�ne OV when V is not irredu
ible.Exer
ise 3.7. Let V = C 2 and set U = C 2 � f(0; 0)g. Show that OV (U) = C [x; y℄.The stru
ture sheaf OV has two important properties.



12 David A. CoxTheorem 3.1. Let V = Spe
(R) be an irredu
ible aÆne variety.a. OV (V ) = R.b. If f 2 R, then OV ��Vf = OVf .Proof. For part a, it suÆ
es to show OV (V ) � R. If � : V ! C is a morphism, then for ea
hp 2 V , there are fp; gp 2 R su
h that � = gp=fmpp and fp(p) 6= 0. Let I = hfmpp j p 2 V i � R.It follows easily that V(I) = ;, so that by the Nullstellensatz, pI = I(V(I)) = I(;) = R. Thus1 2 R, whi
h implies that 1 =Pp2S hpfmpp where hp 2 R and S � V is �nite. Then� =Xp2S hpfmpp � =Xp2S hp gp 2 R:For part b, let U � V be Zariski open. If � : U ! C is a morphism, then for every p 2 U ,there is p 2 Vfp � U su
h that � 2 Rfp . Now suppose in addition that U � Vf . If we regard fp asan element of Rf , then one easily sees that� 2 Rfp � Rffp = (Rf )fp :Furthermore, Vfp \ Vf = (Vf )fp shows that p 2 (Vf )fp � U � Vf . By de�nition, this implies that� 2 OVf (U), and part b now follows easily.Combining parts a and b of Theorem 3.1, we 
on
lude thatOV (Vf ) = OV ��Vf (Vf ) = OVf (Vf ) = Rfwhen V = Spe
(R) and f 2 R.The De�nition of Abstra
t Variety. We now give the main de�nition of this se
tion.De�nition 3.2. An abstra
t variety (X;OX ) is a ringed spa
e over C where ea
h p 2 X hasa neighborhood U su
h that the restri
tion (U;OX ��U) is isomorphi
 (as a ringed spa
e over C ) to(V;OV ) for some aÆne variety V .Given an abstra
t variety (X;OX ), an open set U � X is an aÆne open if (U;OX ��U ) isisomorphi
 (over C ) to the ringed spa
e of an aÆne variety. The topology on X is 
alled theZariski topology sin
e it restri
ts to the Zariski topology in ea
h aÆne open subset.Exer
ise 3.8. Let (X;OX ) be an abstra
t variety and let U � X be Zariski open. Show thatevery se
tion � 2 OX(U) gives a fun
tion � : U ! C . We say that � a regular fun
tion on U .Exer
ise 3.9. Let (X;OX ) be an abstra
t variety and let Y � X be Zariski 
losed. If U1 � Y isopen, de�ne OY (U1) to be the set of all fun
tions � : U1 ! C su
h that for every p 2 U1, there isU � X open and a regular fun
tion ~� : U ! C with p 2 U \ Y � U1 and ���U\Y = ~���U\Y .a. Show that U1 7! OY (U1) is a sheaf of C -algebras on Y .b. When (X;OX ) is an aÆne variety and Y � X is a subvariety, prove that the sheaf de�ned inpart a is pre
isely the sheaf of regular fun
tions on Y
. When (X;OX) is an abstra
t variety and Y � X is Zariski 
losed, prove that the sheaf of parta makes (Y;OY ) into an abstra
t variety.Given an abstra
t variety (X;OX ), we say that Y � X is a subvariety if it is Zariski 
losed.The above exer
ise shows that Y inherits the stru
ture of an abstra
t variety in a natural way. Wede�ne (X;OX) to be irredu
ible if X is not the union of two proper subvarieties.
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ise 3.10. Prove that an abstra
t variety is irredu
ible if and only if it is 
onne
ted and everyaÆne open subset is irredu
ible.Let us show that Pn 
an be regarded as an abstra
t variety. In order to de�ne the stru
turesheaf OPn , we will use the �eld of rational fun
tions C (Pn) de�ned in Exer
ise 2.6 of x2. If U � Pnis Zariski open, then a fun
tion � : U ! C is regular if for ea
h p 2 U , there is f=g 2 C (Pn) su
hthat g(p) 6= 0 and ���UnU\V(g) = (f=g)��UnU\V(g). ThenOPn(U) = f� : U ! C j � is a regular fun
tiongde�nes a sheaf OPn on Pn. We also have the aÆne open sets Ui = f(a0; : : : ; an) 2 Pn j ai 6= 0g. InExer
ise 2.11, we noted that if we regard x0=xi; : : : ; xi�1=xi; xi�1=xi; : : : ; xn=xi as 
oordinates onC n, then the map Ui ' C n indu
es an isomorphismC (Pn) ' C (x0=xi; : : : ; xi�1=xi; xi�1=xi; : : : ; xn=xi):Using this isomorphism, it is easy to see that (Ui;OPn ��Ui) is isomorphi
 to (C n;OC n). This provesthat Pn is an abstra
t variety. By Exer
ise 3.10, we see that Pn is irredu
ible.As is 
ustomary, we often write an abstra
t variety (X;OX ) as simply X, and we will alsodrop the \abstra
t". Thus, \the variety X" is short for \the abstra
t variety (X;OX)".Finally, a variety X also has a 
lassi
al topology , whi
h is the 
oarsest topology on X thatagrees with the 
lassi
al topology on every aÆne open subset of X. The stru
ture sheaf OX is nota sheaf in the 
lassi
al topology. However, one 
an de�ne the 
losely related sheaf OanX of analyti
fun
tions on X, whi
h is a sheaf in the 
lassi
al topology. We 
all (X;OanX ) the 
omplex analyti
spa
e asso
iated to the variety X. See [5, Appendix B℄ and [9℄ for more details.The Fun
tion Field of an Irredu
ible Variety. If X is irredu
ible, then a rational fun
tionon X is a regular fun
tion � : U ! C , where U is a nonempty Zariski open. Two rational fun
tionsare equivalent if they agree on some nonempty Zariski open, and the set of equivalen
e 
lasses isdenoted C (X). One 
an prove that C (X) is a �eld, 
alled the fun
tion �eld of X.Exer
ise 3.11. Let U be an aÆne open of an irredu
ible variety X. Prove that C (U) ' C (X).We say that � 2 C (X) is de�ned at p 2 X there is a regular fun
tion �0 : U ! C su
h thatp 2 U and � is equivalent to �0. For � 2 C (X), the set fp 2 X j � is de�ned at pg is the largestZariski open on whi
h � is de�ned.The Lo
al Ring of a Point. Given an irredu
ible variety X and a point p 2 X, we de�ne thelo
al ring of X at p to be OX;p = f� 2 C (X) j � is de�ned at pg:The key feature of OX;p is des
ribed in the following exer
ise.Exer
ise 3.12. Let OX;p de�ned as above.a. Show that mX;p = f� 2 OX;p j �(p) = 0g is a maximal ideal of OX;p.b. Given � 2 OX;p, show that �(p) 6= 0 implies that ��1 2 OX;p.
. Use part b to show that mX;p is the unique maximal ideal of OX;p.



14 David A. CoxIn general, a 
ommutative ring R with unit is 
alled a lo
al ring if it has a unique maximalideal m. Thus OX;p is a lo
al ring by Exer
ise 3.12.For an arbitrary variety X (not ne
essarily irredu
ible), one 
an de�ne the lo
al ring OX;p tobe the dire
t limit OX;p = lim�!p2U OX(U);where the limit is over all neighborhoods U of p. This is des
ribed in [4℄ and [5℄.Morphisms. A morphism or regular map 
onsists of a 
ontinuous map � : X ! Y and, for ea
hZariski open U � Y , a C -algebra homomorphism �# : OY (U)! OX(��1(U)), su
h that:� �# is 
ompatible with restri
tion maps.� For ea
h p 2 X, the map of lo
al rings �#p : OY;�(p) ! OX;p indu
ed by �# is a lo
alhomomorphism, meaning that mY;�(p) = (�#p )�1(mX;p).A morphism (�; �#) : (X;OX )! (Y;OY ) is usually written � : X ! Y .An important results is that if V = Spe
(R) and W = Spe
(S) are irredu
ible aÆne varieties,then giving a morphism � : V !W is equivalent to giving a C -algebra homomorphism �� : S ! R.This is proved in [4℄ and [5℄.Gluing Together AÆne Varieties. We �rst observe that a variety X 
an be 
onstru
ted by\gluing together" aÆne varieties along Zariski open subsets. Namely, De�nition 3.2 implies thatX has an aÆne open 
over U�, so that f� : U� ' V�, where V� is an aÆne variety. Then, for any�; �, the set V�� = f�(U� \ U�) � V�is Zariski open in V�, and the mapg�� = f� Æ f�1� : V�� ! V��is an isomorphism of Zariski open subsets. Furthermore, these maps are 
ompatible as follows:� g�� = 1V� for every �.� g�
��V��\V�
 Æ g����V��\V�
 = g�
 ��V��\V�
 for every �; �; 
.We 
all these the 
ompatibility 
onditions.Conversely, suppose we have a 
olle
tion(fV�g�; fV��g�;� ; fg��g�;�);where ea
h V� is an aÆne variety, V�� � V� is Zariski open, and the g�� : V�� ' V�� areisomorphisms whi
h satisfy the above 
ompatibility 
onditions. Then we get the topologi
al spa
eX =a� V�= �where a 2 V� is equivalent to b 2 V� if a 2 V�� and b = g��(a). Furthermore, the stru
ture sheavesOV� pat
h to give a sheaf OX , and from here it is straightforward to prove that (X;OX) is a varietywith an aÆne open 
over U� su
h that U� ' V� for every �. In this situation, we say that X isobtained from the V� by gluing them together along the V�� via the g�� .Exer
ise 3.13. Let V0 = V1 = C , V01 = V10 = C � f0g and g01(x) = g10(x) = x�1. Prove thatthis data determines the variety P1.
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 Geometry 15Cartesian Produ
ts. If X and Y are varieties, then their 
artesian produ
t X�Y exists, thoughthe de�nition is subtle. The diÆ
ulty is that the usual produ
t topology on X�Y gives the wrongtopology. Here is an example.Exer
ise 3.14. Show that the produ
t topology on C � C , where we use the Zariski topology onea
h fa
tor, is not the Zariski topology on C 2.To get the 
orre
t de�nition of 
artesian produ
t, we begin with aÆne varieties. Suppose thatV = V(f1; : : : ; fs) � C n, with variables x1; : : : ; xn and W = V(g1; : : : ; gt) � C m, with variablesy1; : : : ; ym. Also let R and S be the 
oordinate rings of V and W respe
tively.Exer
ise 3.15. Let V = Spe
(R) and W = Spe
(S) be as above.a. Show that V �W � C n � C m = C n+m is the aÆne variety V(f1; : : : ; fs; g1; : : : ; gt), wherefi(x1; : : : ; xn); gj(y1; : : : ; ym) 2 C [x1; : : : ; xn; y1; : : : ; ym℄.b. Show that the 
oordinate ring of V �W is R
C S.Thus the 
artesian produ
t of V = Spe
(R) and W = Spe
(S) is V �W = Spe
(R 
C S).In the general 
ase, we think of X as obtained by gluing together Zariski open subsets of U�,and similarly Y 
omes from gluing together Zariski open subsets of U 0� . Then X�Y is 
onstru
tedby gluing together the aÆne varieties U� � U 0� along suitable Zariski open subsets. We omit thedetails of the 
onstru
tion, whi
h 
an be found in [4℄ and [5℄.As an example, Pn � Pm 
an be 
onstru
ted by this method. If x0; : : : ; xn are 
oordinates onPn and y0; : : : ; ym are 
oordinates on Pm, then one 
an show that V � Pn � Pm is Zariski 
losedif and only if V = V(f1; : : : ; fs), where fi 2 C [x0; : : : ; xn; y0; : : : ; ym℄ is bihomogeneous, meaningthat it is separately homogeneous in the xi and in the yj .Finally, we should mention that if X and Y are varieties, then the 
lassi
al topology on X�Yis the produ
t of the 
lassi
al topologies on X and Y respe
tively.x4. Separated, Quasi-Compa
t, Complete, and Normal VarietiesSeparatedness. Given any variety X, the diagonal map of X is the map � : X ! X �X de�nedby �(p) = (p; p) for p 2 X. Then X is separated if the image of the diagonal map �(X) is Zariski
losed in X �X. Here are some examples of separated and non-separated varieties.Exer
ise 4.1. Consider the variety X 
onstru
ted by identifying two 
opies of C along C �f0g (inthe language of x3, this 
orresponds to V0 = V1 = C , V01 = V10 = C �f0g and g01(x) = g10(x) = x).Show that X is not separated.Exer
ise 4.2. Prove that C n is separated by 
onsidering V(x1 � y1; : : : ; xn � yn) � C n � C n.Exer
ise 4.3. Prove that a subvariety of a separated variety is separated.Combining Exer
ises 4.2 and 4.3, we see that aÆne varieties are always separated. We willomit the proof that Pn is separated. By Exer
ise 4.3, it follows that every proje
tive variety isseparated.In [9℄, Serre 
hara
terized separatedness in terms of the 
lassi
al topology as follows.



16 David A. CoxTheorem 4.1. A variety X is separated if and only if it is Hausdor� in the 
lassi
al topology.For example, this theorem makes it easy to see that the variety X of Exer
ise 4.1 is notHausdor� (the two 
opies of the origin in X do not have disjoint neighborhoods). This also givesa qui
k proof of Exer
ise 4.2 sin
e C n is Hausdor� in the 
lassi
al topology.Here are some properties of separated varieties.Proposition 4.2. Let X be a separated variety.a. If U and V are aÆne open subsets of X, then U \ V is also an aÆne open of X.b. If f; g : Y ! X is a morphism of varieties, then fy 2 Y j f(y) = g(y)g is a subvariety of Y .Proof. For part a, we note that � : X ! X � X identi�es U \ V with �(X) \ (U � V ).We know that �(X) is Zariski 
losed in X � X by the de�nition of separated. It follows that�(X) \ (U � V ) is Zariski 
losed in U � V . But U � V is aÆne by Exer
ise 3.15, whi
h impliesthat �(X) \ (U � V ) ' U \ V is also aÆne.To prove part b, 
onsider � : Y ! X �X de�ned by �(y) = (f(y); g(y)). Sin
efy 2 Y j f(y) = g(y)g = ��1(�(X));we see that fy 2 Y j f(y) = g(y)g is Zariski 
losed in Y sin
e � is 
ontinuous in the Zariski topologyand (by separatedness) �(X) is Zariski 
losed in X �X.When studying di�erentiable manifolds, one always assumes that the underlying topologi
alspa
e is Hausdor�. Similarly, in algebrai
 geometry, the varieties of interest are almost alwaysseparated. For this reason, we hen
eforth reserve the term variety for a separated variety. Anon-separated variety will be 
alled a pre-variety .Quasi-Compa
tness. We say that a variety X is quasi-
ompa
t if X is the union of �nitely manyaÆne open subsets. Any aÆne variety is quasi-
ompa
t. An more interesting example is Pn, whi
his quasi-
ompa
t sin
e it the union of the aÆne open subsets Ui = Pn �V(xi).Here are the main properties of quasi-
ompa
t varieties.Proposition 4.3. Let X be a quasi-
ompa
t variety. Then:a. Every subvariety of X is quasi-
ompa
t.b. Every Zariski open subset of X is quasi-
ompa
t.
. Every Zariski open 
over of X has a �nite sub
over.Proof. Suppose that X = U1 [ � � � [ Ur where Ui is an aÆne open subset of X. Then part a isobvious sin
e Y = (Y \ U1) [ � � � [ (Y \ Ur) where Y \ Ui is an aÆne open of Y .For part b, U = (U \U1)[� � �[ (U \Ur) shows that we 
an assume that X = Spe
(R) is aÆne.Then X �U = V(I) for some ideal I � R. The Hilbert basis theorem implies I = hf1; : : : ; fsi, andit follows that U = Ssi=1Xfi .Finally, we leave part 
 as Exer
ise 4.4 below.Exer
ise 4.4. Prove that every Zariski open 
over of a quasi-
ompa
t variety has a �nite sub
over.This exer
ise explains there the term \quasi-
ompa
t" 
omes from. As with separatedness,the varieties of interest to algebrai
 geometers are almost always quasi-
ompa
t. Hen
e, from nowon, whenever we say variety , we will mean a separated quasi-
ompa
t abstra
t variety.Completeness and Properness. A variety X is 
omplete if the following 
onditions hold:� X is separated.
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 Geometry 17� X is quasi-
ompa
t.� For every other variety Y , the proje
tion mapX�Y ! Y is 
losed, meaning that the proje
tionof a Zariski 
losed set in X � Y is Zariski 
losed in Y .Exer
ise 4.5. Prove that a subvariety of a 
omplete variety is 
omplete.Exer
ise 4.6. Prove that the 
artesian produ
t of two 
omplete varieties is 
omplete.Exer
ise 4.7. Prove that a variety X is 
omplete if and only if for all m � 1, the proje
tion mapX � C m ! C m is 
losed.The most basi
 example of a 
omplete variety is Pn.Theorem 4.4. Pn is 
omplete.For a proof, note that Theorem 6 of [3, Chapter 8, x5℄ implies that the proje
tion map Pn �C m ! C m is 
losed. By Exer
ise 4.7, it follows that Pn is 
omplete, and then any proje
tive varietyis 
omplete by Exer
ise 4.5.The 
ompleteness of Pn is 
losely related to elimination theory. To see why, suppose we havepolynomials f1; : : : ; fs 2 C [x0; : : : ; xn; y1; : : : ; ym℄whi
h are homogeneous in x0; : : : ; xn. We 
an think of the fi as homogeneneous polynomials in thexi whose 
oeÆ
ients depend on the \parameters" yj . Question: For whi
h values of the parametersyj do the equations(4:1) f1 = � � � = fs = 0have a nontrivial solution in the xi?To answer this question, observe that (4.1) de�nes a subvariety W � Pn� C m, and the valuesof the yj for whi
h (4.1) has a nontrivial solution is the image of W under the proje
tion mapPn � C m ! C m. Sin
e Pn is 
omplete, this image is a variety in C m. In other words, there arepolynomials g1; : : : ; gl 2 C [y1; : : : ; ym℄ su
h that (4.1) has a nontrivial solution for the parametervalues yj = bj if and only if(4:2) g1(b1; : : : ; bm) = � � � = gl(b1; : : : ; bm) = 0:Chapter 8 of [3℄ gives an algorithm for �nding the polynomials gi. We say that (4.2) is obtainedfrom (4.1) by eliminating the variables x0; : : : ; xn. This is proje
tive elimination theory .Serre's paper [9℄ 
hara
terizes 
ompleteness in terms of the 
lassi
al topology as follows.Theorem 4.5. A variety X is 
omplete if and only if it is 
ompa
t in the 
lassi
al topology.This theorem and the Hopf �bration S2n+1 ! Pn give another proof that Pn is 
omplete (seeExer
ise 2.2). In algebrai
 geometry, 
ompleteness is a very useful property. Here is a result whi
hindi
ates some reasons why.Theorem 4.6. Let X be a 
omplete variety.a. If � : X ! Y is a morphism, then its image �(X) is a subvariety of Y .b. If � : C � ! X is a morphism, then � extends uniquely to a morphism ~� : C ! X.
. X is aÆne if and only if X is a �nite set of points.



18 David A. Coxd. If X is 
onne
ted, then every morphism � : X ! C is 
onstant.Part b of this theorem says that if X is 
omplete and � : C � ! X is a morphsim, thenlimt!0 �(t) exists as a unique element of X whenever X is 
omplete (in fa
t, limt!1 �(t) alsoexists, so that � extends to a map P1 ! X). Part 
 says that aÆne varieties are very far frombeing 
omplete sin
e these 
on
epts 
oin
ide only for �nite sets of points.Finally, 
ompleteness 
losely related to the idea of a proper morphism � : X ! Y . We will notgive the de�nition here (we would need to de�ne �bered produ
ts and morphisms of �nite type).The reader should 
onsult [4℄ and [5℄ for the full de�nition. Turning to Serre's 
lassi
 paper [9℄ yetagain, we 
an 
hara
terize properness in terms of the 
lassi
al topology as follows.Theorem 4.7. A morphism � : X ! Y is proper if and only if it is proper in the 
lassi
al topology,meaning that ��1(C) � X is 
ompa
t whenever C � Y is 
ompa
t.Exer
ise 4.8. Prove that X is 
omplete if and only if X ! fptg is proper, where fptg is thevariety 
onsisting of a single point.Normality. A variety X is normal if it is irredu
ible and the lo
al ring OX;p is integrally 
losedfor every p 2 X. In order to relate this to the de�nition of normal aÆne variety given in x1, wewill need the following exer
ise.Exer
ise 4.9. Let R be an integral domain with �eld of fra
tions K. A subset S � R is amultipli
ative subset if 1 2 S, 0 =2 S, and S is 
losed under multipli
ation. Then the lo
alization ofR at S is RS = fa=b 2 K j a 2 R; b 2 Sg.a. Prove that RS is the smallest subring of K 
ontaining R su
h that every s 2 S is invertible inRS .b. Prove that if R is integrally 
losed, then RS is integrally 
losed.We now show that for aÆne varieties, our two notions of normal 
oin
ide.Proposition 4.8. Let V = Spe
(R) be an irredu
ible aÆne variety. The R is integrally 
losed ifand only if the lo
al ring OV;p is integrally 
losed for all p 2 V .Proof. We know from x1 that p 2 V 
orresponds to a maximal ideal M � R. Then R �M is amultipli
ative subset sin
e maximal implies prime, and one easily shows thatOV;p = RR�M :If R is integrally 
losed, then Exer
ise 4.9 implies that OV;p is also integrally 
losed. Conversely, ifall of the OV;p are integrally 
losed, then one easily shows that\p2V OV;pis also integrally 
losed. However, this interse
tion is pre
isely OV (V ), whi
h equals R by part aof Theorem 3.1 of x3. It follows that R is integrally 
losed.Proposition 4.8 has a following immediate 
orollary.
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 Geometry 19Corollary 4.9. An irredu
ible variety X is normal if and only if it is a union of aÆne varietiesU� = Spe
(R�) where R� is integrally 
losed.x5. Smooth and Quasismooth VarietiesThe Dimension of a Variety. We were using a very naive notion of dimension when we assertedthat C n and (C �)n have dimension n. For an arbitrary variety X, there are several ways to de�nedimX rigorously. In the irredu
ible 
ase, we do this as follows.De�nition 5.1. The dimension of an irredu
ible variety X is:� The trans
enden
e degree of C (X) (this is the maximal number of algebrai
ally independentelements of C (X)).� The maximum number n su
h that one 
an �nd distin
t irredu
ible subvarieties; 6= V0 � V1 � � � � � Vn = X:It is not at all obvious that these de�nitions 
oin
ide, but they do|see [5℄. In the aÆne orproje
tive 
ase, one 
an also de�ne dimension using the degree of an appropriate Hilbert polynomial.This approa
h is used in [3℄.Some important results 
on
erning the dimension of a variety are:� C n, (C �)n and Pn have dimension n.� The dimension of a variety is the maximum of the dimensions of its irredu
ible 
omponents.� If W is a subvariety of V , then dimW � dimV . Furthermore, if V is irredu
ible and W is aproper subvariety, then dimW < dimV .� dimX � Y = dimX + dimY .� If V is an irredu
ible aÆne variety and f 2 C [V ℄ is not invertible, then every irredu
ible
omponent of V(f) � V has 
odimension 1.� Let V � Pn be irredu
ible of positive dimension and pi
k f 2 C [x0; : : : ; xn℄. If f doesn't vanishon V , then then every irredu
ible 
omponent of V \V(f) � V has 
odimension 1.The Dimension of a Variety at a Point. The dimension of a variety X at a point p 2 X,denoted dimpX, is de�ned as either:� The maximum of the dimensions of the irredu
ible 
omponents of X whi
h 
ontain p.� The Krull dimension of the lo
al ring OX;p (this is one less than the maximum length of a
hain of prime ideals in OX;p).Some of the properties of the dimension at a point in
lude:� dimX = maxp2X dimpX.� If p 2 Y � X, then dimp Y � dimpX.� If p 2 X and q 2 Y , then dim(p;q)X � Y = dimpX + dimp Y .The Zariski Tangent Spa
e. In multivariable 
al
ulus, one de�nes the tangent spa
e at a pointof a surfa
e in R3, and this generalizes to the tangent spa
e at a point of a di�erentiable manifold.In algebrai
 geometry, the Zariski tangent spa
e plays a similar role.De�nition 5.2. Let p be a point of a variety X and let mX;p be the maximal ideal of the lo
alring OX;p. Then the Zariski tangent spa
e is de�ned to beTp(X) = HomC (mX;p=m2X;p; C ):
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ise 5.2. Use OX;p=mX;p ' C to prove that mX;p=m2X;p has a natural stru
ture as a ve
torspa
e over C . This shows that De�nition 5.2 makes sense.Exer
ise 5.3. Let V � C n be an aÆne variety and p = (a1; : : : ; an) 2 V .a. Show that mCn;p = hx1 � a1; : : : ; xn � ani � OCn;p.b. Show that mCn;p=m2Cn;p has dimension n, and 
on
lude that dimC Tp(C n) = n.
. Use the surje
tion OCn;p ! OV;p to 
onstru
t natural in
lusion Tp(V ) � Tp(C n).d. Con
lude that dimC Tp(V ) � n.In the aÆne 
ase, page 32 of [5℄ shows how to 
ompute the Zariski tangent spa
es as follows.Lemma 5.3. Let V � C n be a aÆne variety and let p 2 V . Also assume that I(V ) = hf1; : : : ; fsi.For ea
h i, let dp(fi) = �fi�x1 (p)x1 + � � �+ �fi�xn (p)xn:The Tp(V ) is isomorphi
 to the subspa
e of C n de�ned by dp(f1) = � � � = dp(fs) = 0.Exer
ise 5.4. Let V = V(x3 � y2) � C 2. For ea
h p 2 V , show that dimC Tp(V ) = 1 unless p isthe origin, in whi
h 
ase the dimension is 2.Exer
ise 5.5. If p 2 X and q 2 Y , prove that T(p;q)(X � Y ) ' Tp(X) � Tq(Y ). Hint: Redu
e tothe aÆne 
ase and use Lemma 2.3. See also Exer
ise 3.15 of x3.In general, we always have dimC Tp(X) � dimpX. See Exer
ise 5.10 of [5, Chapter I℄.Smooth Varieties. As with dimension, there are many ways to de�ne smoothness.De�nition 5.4. A variety X is smooth or nonsingular at p 2 X if dimC Tp(X) = dimp(X). Wesay that p is a singular point of X if it is not a smooth point.Sin
e Tp(X) = HomC (mX;p=m2X;p; C ), we see that X is smooth at p when dimp(X) equals thedimension of mX;p=m2X;p as a ve
tor spa
e over OX;p=mX;p. In terms of 
ommutative algebra, thismeans that p 2 X is smooth if and only if OX;p is a regular lo
al ring.By Exeri
se 5.3, every point of C n is smooth (su
h a variety is 
alled smooth). For a point ofa subvariety of C n, we 
an test for smoothness as follows.Exer
ise 5.6. Let V � C n be an aÆne variety and let I(V ) = hf1; : : : ; fsi. Also let p 2 V and setd = dimp V . Then prove that V is smooth at p if and only if the Ja
obian matrixJp(f1; : : : ; fs) = � �fi�xj (p)�1�i�s;1�j�nhas rank n� d. Hint: Use Lemma 5.3.Exer
ise 5.7. Let V = V(xy � zw). Prove that the origin is the only singular point of V .Exer
ise 5.8. Let p 2 X and q 2 Y . Prove that X � Y is smooth at (p; q) if and only if X and Yare smooth at p and q respe
tively. Hint: Use Exer
ise 5.5 and the properties of dimpX.Exer
ise 5.9. Given a variety X, the set Xsing = fp 2 X j p is singularg is the singular lo
us ofX. Use Exer
ise 5.5 to prove that Xsing is a subvariety of X. (With more work, one 
an show thatXsing is a proper subvariety of X. See Theorem 5.3 of [5℄.)
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al Analyti
 Equivalen
e. When we want to say that two varieties are lo
ally the same, wehave to be 
areful to spe
ify what we mean by \lo
al".Suppose that we have p 2 X and q 2 Y , where X and Y are varieties. Then, in the Zariskitopology, X and Y being \lo
ally equivalent" at p and q respe
tively means that there are Zariskiopen sets p 2 U � X and q 2 V � Y su
h that U ' V as varieties. Sin
e Zariski open subsets arehuge, this notion of \lo
al equivalen
e" is not very useful.Exer
ise 5.10. Show that p 2 X and q 2 Y are \lo
ally equivalent" in the above sense if and onlyif the lo
al rings OX;p and OY;q are isomorphi
 as C -algebras.In x3, we dis
ussed the sheaf OanX of analyti
 fun
tions on X, whi
h is a sheaf in the 
lassi
altopology. This allows one to de�ne an analyti
 (or holomorphi
) map between 
lassi
al open setsin varieties. Then X and Y are analyti
ally equivalent at p and q if there are 
lassi
al open setsp 2 U � X and q 2 V � Y su
h that U ' V as analyti
 varieties. Here are two ni
e fa
ts aboutlo
al analyti
 equivalen
e:� As in Exer
ise 5.7, X and Y are analyti
ally equivalent at p and q if and only if there is aC -algebra isomorphism between the lo
al rings OanX;p and OanY;q.� p 2 X is smooth if and only if it is analyti
ally equivalent to 0 2 C n.Finite Quotients of AÆne Spa
e. Let G be a �nite subgroup of GL(n; C ). Then G a
ts on C n,and the quotient C n=G is the set of G-orbits. By Chapter 7 of [3℄, we 
an turn this set into anaÆne variety as follows.Proposition 5.5. Given a �nite subgroup G � GL(n; C ), let C [x1; : : : ; xn℄G � C [x1; : : : ; xn℄ bethe subring of invariant polynomials. There is a natural bije
tion C n=G ' Spe
(C [x1; : : : ; xn℄G).Understanding the stru
ture of C [x1; : : : ; xn℄G is one of the goals of invariant theory . In some
ases, the quotient C n=G is still smooth.Exer
ise 5.11. Let Cm 2 GL(n; C ) be the matrix with e2�i=m; 1; : : : ; 1 on the main diagonaland 0's elsewhere, and let G = fCim j 0 � i � m � 1g. Use the map C n ! C n given by(a1; a2; : : : ; an) 7! (am1 ; a2; : : : ; an) to prove that C n=G ' C n. Also, what is C [x1; : : : ; xn℄G?Exer
ise 5.12. Let the symmetri
 group Sn be embedded in GL(n; C ) as the set of permutationmatri
es. Then Sn a
ts on C n by permuting 
oordinates. Prove that C n=Sn ' C n. Hint: Elemen-tary symmetri
 polynomials.A matrix in GL(n; C ) is a 
omplex re
e
tion if it is 
onjugate to the matrix Cm of Exer
ise 5.7,andG � GL(n; C ) is a 
omplex rotation group if it is generated by 
omplex rotations. The Shephard-Todd-Chevalley theorem says that C n=G ' C n if and only if G is a 
omplex re
e
tion group. Aproof 
an be found in [10, Se
tion 2.4℄.Exer
ise 5.13. Show that the n� n permutation matri
es form a 
omplex re
e
tion group.Exer
ise 5.14. Let G � GL(n; C ) be a �nite subgroup and let H be subgroup of G generated bythe elements of G whi
h are 
omplex re
e
tions. Prove that H is normal in G.We next de�ne a spe
ial type of �nite matrix group.



22 David A. CoxDe�nition 5.6. A �nite subgroup G � GL(n; C ) is small if it 
ontains no 
omplex re
e
tionsother than the identity.Small subgroups were introdu
ed by Prill in order to obtain a one-to-one 
orresponden
ebetween groups and quotients. More pre
isely, we have the following results, proved in [7℄:� If G � GL(n; C ) is �nite, then in a 
lassi
al neighborhood of the origin, C n=G is analyti
allyequivalent to the quotient of C n by a small subgroup. (The rough idea is that if H is thesubgroup of Exeri
ise 5.14, then C n=H ' C n by the Shephard-Todd-Chevalley Theorem, andin a 
lassi
al neighborhood of the origin, the a
tion of G=H on C n is analyti
ally equivalentto the linear a
tion of a small subgroup.)� If G1 and G2 are small subgroups of GL(n; C ) whi
h give analyti
ally equivalent singularities,then G1 and G2 are 
onjugate in GL(n; C ).Quasimooth Varieties. We now de�ne a type of singularity whi
h is 
lose to being smooth.De�nition 5.7. A point p of a variety X is a �nite quotient singularity if there is a smallsubgroup G � GL(n; C ) su
h that p 2 X is analyti
ally equivalent to 0 2 C n=G. Then X isquasismooth or has �nite quotient singularities or is Q -smooth if every point of p is a �nitequotient singularity.Note that the de�nition of �nite quotient singularity allows G to be the trivial subgroup ofGL(n; C ). It follows that any smooth variety is quasismooth. Here is an example to show that the
onverse is not true.Exer
ise 5.15. Let V = V(xz � y2) � C 3.a. Show that the origin is the unique singular point of V .b. Let G = f�Ig � GL(2; C ). If we think of C 2 as Spe
(C [a; b℄), then show that C [a; b℄G =C [a2; ab; b2℄.
. Show that C [a2; ab; b2℄ ' C [x; y; z℄=hxz � y2i, and 
on
lude that C 2=G ' V .For the surfa
e V � C 3 of this exer
ise, 0 2 V is not smooth by part a and is a �nite quotientsingularity by part 
. Sin
e all other points of V are smooth, we see that V is quasismooth but notsmooth.We 
an generalize Exer
ise 5.15 as follows.Proposition 5.8. Let G � C n be a small subgroup. Then C n=G is quasismooth.Proof. The de�nition of quasismooth guarantees that 0 2 C n=G is a �nite quotient singularity.But what about the other points of C n=G? Given v 2 C n, let Gv = fg 2 G j g � v = vg be itsisotropy subgroup. We will show that v 2 C n=G is analyti
ally equivalent to 0 2 C n=Gv .First observe that w 7! w+ v is equivariant with respe
t to the a
tion of Gv , as is w 7! w� v.This gives an isomorphism of varieties C n=Gv ! C n=Gv whi
h takes 0 to v. Thus 0 2 C n=Gv isanalyti
ally equivalent to 0 2 C n=Gv .Hen
e we need only show that v 2 C n=Gv is analyti
ally equivalent to v 2 C n=G. Letfgig be left 
oset representatives for G=Gv . Then C n=G is obtained from C n=Gv by identifyingw 2 C n=Gv with gi �w for all i. Sin
e the points gi � v are distin
t in C n=Gv , we 
an �nd a 
lassi
alneighborhood U of v 2 C n=Gv su
h that the neighborhoods gi �U are disjoint. The gi a
t on C n=Gvas isomorphisms of varieties, whi
h implies that v 2 U � C n=Gv is analyti
ally equivalent to aneighborhood of v 2 C n=G. This gives the desired analyti
 equivalen
e.Exer
ise 5.16. Prove that a 
artesian produ
t of quasismooth varieties is quasismooth.
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al Ring of an Irredu
ible Hypersurfa
eLet X be an irredu
ible variety with fun
tion �eld C (X). A subvariety Y � X is a hypersurfa
eif every irredu
ible 
omponent of Y has 
odimension 1 in X.The Lo
al Ring. Let Y � X be an irredu
ible hypersurfa
e. Then 
onsider the setOX;Y = ff 2 C (X) j f is de�ned on a nonempty Zariski open subset of Y g:To understand this, re
all that f 2 C (X) means that there is a nonempty Zariski open Y � X andf : U ! C is a morphism. Then f 2 OX;Y when we 
an �nd su
h a U satisfying U \ Y 6= 0.Exer
ise 6.1. Prove that OX;Y is a lo
al ring and that the maximal ideal 
onsists of thosef 2 OX;Y whi
h vanish on Y .Exer
ise 6.2. Let Y = V(x) � C 2.a. Prove that OC 2;Y = nP (x; y)Q(x; y) j P (x; y); Q(x; y) 2 C [x; y℄; Q(0; y) 6= 0o:b. Given f 2 C (x; y), prove that f = xmg, where m 2 Z and g 2 OC 2;Y is a unit. Hint: Writef = P=Q, where Q(0; y) 6= 0. Explain why P = xkP 0 and Q = xlQ0, where P (0; y) and Q(0; y)are nonzero.
. Prove that every nonzero ideal of OC 2;Y is of the form hxmi for some m � 0.Given f 2 C (x; y), Exer
ise 6.2 tells us that f = xmg for m 2 Z and g a unit in OC 2;Y . We
all m the order of vanishing of f on Y = V(x) � C 2 and denote it by ordY (f).Dis
rete Valuation Rings. The 
ru
ial observation is that Exer
ise 6.2 generalizes to any normalvariety. Let R be an integral domain with �eld of fra
tions K, and set K� = K � f0g. Then R isa dis
rete valuation ring if there is a surje
tive fun
tionordR : K� ! Zsu
h that every for a; b 2 K�, we have:� ordR(ab) = ordR(a) + ordR(b).� ordR(a+ b) � min(ordR(a); ordR(b)) provided a+ b 6= 0.� R = fa 2 K� j ordR(a) � 0g [ f0g.We say that ordR is a valuation on K and that R is its valuation ring .Exer
ise 6.3. Let R be a dis
rete valuation ring.a, Prove that R is a lo
al ring with m = fa 2 R j ordR(a) > 0g as maximal ideal.b. Let a 2 R satisfy ordR(a) = 1 (a exists be
ause ordR is onto). Prove that m = hai.
. Let a be as in part b. Prove that any nonzero ideal of R is of the form hami for some m � 0.Exer
ise 6.4. Prove that a dis
rete valuation ring is an integrally 
losed one-dimensional Noethe-rian lo
al ring. (A ring R is Noetherian if every ideal of R is �nitely generated, i.e., if the HilbertBasis Theorem holds for R.)Here are two 
lassi
 examples of dis
rete valuation rings.
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ise 6.5. Let p be prime. Prove that Z(p) = fa=b j a; b 2 Z; g
d(p; b) = 1g is a dis
retevaluation ring. This gives the p-adi
 valuation, denoted ordp.Exer
ise 6.6. Let C ffzgg the ring of 
omplex power series with positive radius of 
onvergen
e.Prove that C ffzgg is a dis
rete valuation ring and that the valuation gives the order of vanishingof a nonzero element of C ffzgg.For us, the main result we need is as follows.Theorem 6.1. Let Y be an irredu
ible hypersurfa
e in a normal variety X. Then OX;Y is adis
rete valuation ring.Proof. The argument requires substantial amounts of 
ommutative algebra. We will omit thedetails and just sket
h the ideas involved. One begins with the following observations:� OX;Y is integrally 
losed sin
e the lo
alization of a integrally 
losed domain is integrally 
losed.� OX;Y has dimension 1 as a ring sin
e Y having 
odimension 1 in X.� OX;Y is Noetherian sin
e the lo
alization of a Noetherian ring is Noetherian.Thus OX;Y is a integrally 
losed one-dimensional Noetherian lo
al ring. A 
lassi
 result states thatany su
h ring is a dis
rete valuation ring (and 
onversely, as you showed in Exer
ise 6.4). The
ommutative algebra used here 
an be found in [1℄, espe
ially Chapter 9.In the situation of Theorem 6.1, the 
orresponding valuation is writtenordY : C (X)� ! Z:Given f 2 C (X)�, we say that f vanishes to order m along Y if m = ordY (f) > 0 and has a poleof order m on Y if m = �ordY (f) > 0.x7. Weil Divisors on Normal VarietiesWeil Divisors. A Weil divisor on a normal variety X is a �nite formal sumD = sXi=1 aiDiwhere the Di are distin
t irredu
ible hypersurfa
es of X and ai 2 Z. The set of all Weil divisors isa group under addition and is denoted WDiv(X):We say that D =Psi=1 aiDi is e�e
tive if ai � 0 for all i, and we write this asD � 0:Note that any Weil divisor 
an be written uniquely as the di�eren
e of two e�e
tive Weil divisors.The Divisor of a Rational Fun
tion. Given f 2 C (X), we 
an de�ne ordY (f) for every irre-du
ible hypersurfa
e Y � X. This gives a Weil divisor as follows.
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tion to Algebrai
 Geometry 25Proposition 7.1. Let X be normal and f 2 C (X) be nonzero. Then there are at most �nitelymany hypersura
es Y � X su
h that ordY (f) 6= 0. Thus we 
an de�ne the Weil divisordiv(f) =PY ordY (f)Y:Proof. Let U � C be a Zariski open where f : U ! C is a nonzero morphism. Then U 0 =U�f�1(0) is also Zariski open in X. If Y � X is an irredu
ible hypersurfa
e with Y \U 0 6= ;, thenordY (f) = 0 sin
e f is de�ned but nonvanishing on Y \U 0. Thus ordY (f) 6= 0 implies Y � X�U 0.Sin
e X � U 0 is a proper subvariety of X and Y has 
odimension 1, it follows that Y must bean irredu
ible 
omponent of X � U 0. Then we are done sin
e X � U 0 has at most �nitely manyirredu
ible 
omponents.We sometimes write div(f) = div0(f)� div1(f), wherediv0(f) = XordY (f)>0 ordY (f)Ydiv1(f) = XordY (f)<0�ordY (f)Y:We 
all div0(f) (resp. div1(f)) the divisor of zeros of f (resp. the divisor of poles of f). Note thatthese are e�e
tive divisors.Exer
ise 7.1. Explain why div(fg) = div(f) + div(g) and div(1=f) = �div(f) for f; g 2 C (X)�.Exer
ise 7.2. Let f 2 C [t℄ be a polynomial of degree n, and write f = 
(x� a1)m1 � � � (x� ar)mr ,where a1; : : : ; ar 2 C are distin
t.a. When X = C , show that div(f) =Pri=1mi faig.b. When X = P1 = C [ f1g, show that div(f) =Pri=1mi faig � nf1g.Finally, we need to know when the divisor of a rational fun
tion vanishes.Proposition 7.2. Let X be a normal variety and let f 2 C (X)�. Then div(f) � 0 if and only iff : X ! C is a morphism, i.e., f 2 OX(X).Proof. If f : X ! C is a morphism, then f 2 OX;Y for every Y , whi
h in turn implies ordY (f) � 0.Hen
e div(f) � 0. Going the other way, suppose that div(f) � 0. Then(7:1) f 2 TYOX;Y ;where the interse
tion is over all irredu
ible hypersurfa
es of X. Hen
e f is de�ned on a nonemptyZariski open subset of every irredu
ible hypersurfa
e. It follows that f is de�ned outside of asubvariety of 
odimension at least 2. Sin
e X is normal, a standard result in 
ommutative algebraimplies that f is de�ned everywhere (see Exer
ise 7.3 below).Exer
ise 7.3. Let X = Spe
(R), where R is integrally 
losed. Let K be the fra
tion �eld of Rand suppose that f 2 K has div(f) = 0.a. Show that (7.1) implies that f 2 TpRp, where:� The interse
tion is over all prime ideals p � R su
h that V(p) has 
odimension 1 in X(these are 
alled prime ideal of height 1, written ht(p) = 1).� Rp is the lo
alization of R at the multipli
ative subset R � p (in Exer
ise 4.9 of x4, thiswas written RR�p).



26 David A. Coxb. A theorem in 
ommutative algebra states that R = Tht(p)=1Rp whenever R is Noetherian andintegrally 
losed. A proof 
an be found in [6, x12℄. Explain how this 
ompletes the proof ofProposition 7.2.While the proof of Proposition 7.2 uses a lot of 
ommutative algebra, there is also some ni
eintuition 
oming from several 
omplex variables. Suppose that U � C 2 is a 
lassi
al neighborhoodof the origin and that f is holomorphi
 on U � f(0; 0)g. Then Hartogs' Lemma asserts that fextends automati
ally to a holomorphi
 fun
tion on U . This applies more generally as follows: ifX is a normal analyti
 spa
e and f is homomorphi
 on X � Y , where Y has 
odimension at least2, then f extends to a holomorphi
 fun
tion on X.For a 
onne
ted 
omplete variety X, we learned in Theorem 4.6 of x4 that the only morphismsX ! C are 
onstant. This gives the following 
orollary of Proposition 7.2.Corollary 7.3. Let X be a 
omplete normal variety and let f 2 C (X)�. Then div(f) � 0 if andonly if f is 
onstant.Sin
e div(1=f) = �div(f) by Exer
ise 7.1, we see that div(f) = 0 if and only if div(f) � 0 anddiv(1=f) � 0. Hen
e we get another 
orollary of Proposition 7.2.Corollary 7.4. Let X be a normal variety and let f 2 C (X)�. Then div(f) = 0 if and only iff : X ! C � is a morphism, i.e., f 2 OX(X)� (the group of invertible elements of OX(X)).Linearly Equivalent Divisors and the Divisor Class Group. As above, let X be a normalvariety. We say that two Weil divisorsD1;D2 2WDiv(X) are linearly equivalent , writtenD1 � D2,if there is f 2 C (X)� su
h that div(f) = D1 �D2. Furthermore, we say that D 2 WDiv(X) is aprin
ipal divisor if D � 0, i.e., D = div(f) for some f 2 C (X).Exer
ise 7.4. Let � be de�ned as above.a. Use Exer
ise 2.1 to show that set of prin
ipal divisors is a subgroup of WDiv(X).b. Show that � is an equivalen
e relation on Div(X).The subgroup of prin
ipal divisors is denoted Div0(X) (x8 will explain this notation). Partsa and b of Exer
ise 7.4 are linked, of 
ourse, sin
e � is the equivalan
e relation 
oming from thesubgroup Div0(X). The quotient groupCl(X) = WDiv(X)=Div0(X)is the divisor 
lass group of X. It 
onsists of equivalen
e 
lasses of linearly equivalent divisors.Given D 2 Div(X), its divisor 
lass in Cl(X) is denoted [D℄.Here is an important exa
t sequen
e involving the 
lass group.Exer
ise 7.5. Let X be a normal variety. Use Corollary 7.4 to prove that there is an exa
tsequen
e 1! OX(X)� ! C (X)� !WDiv(X)! Cl(X)! 0;where the map C (X)� !WDiv(X) is f 7! div(f) and WDiv(X)! Cl(X) is D 7! [D℄.One pretty result we will need is the following. A proof 
an be found in Proposition 6.2 of [5,II.6℄.
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tion to Algebrai
 Geometry 27Theorem 7.5. For a normal aÆne variety X = Spe
(R), the 
lass group Cl(X) is trivial if andonly if R is a unique fa
torization domain.The 
lass group Cl(X) is sometimes denoted An�1(X), where n = dimX. More generally, one
an de�ne Chow groups for Ak(X) for any irredu
ible variety X.In another dire
tion, let OK be the ring of algebrai
 integers in a number �eld K. Then thes
heme X = Spe
(R) is normal, and Cl(X) 
an de�ned as above. One 
an show that in this 
ase,Cl(X) is the ideal 
lass group of K as de�ned in algebrai
 number theory.x8. Cartier Divisors on Normal VarietiesWe will give a slightly non-standard treatment of Cartier divisors whi
h works ni
ely on normalvarieties.Our De�nition. Let D = Psi=1 aiDi be a Weil divisor on a normal variety X. If U � X is anonempty Zariski open subset, then the restri
tion of D to U is the is Weil divisorD��U = XU\Di 6=; ai U \Di:We now de�ne a spe
ial 
lass of Weil divisors.De�nition 8.1. Let D be a Weil divisor on a normal variety X.a. D is lo
ally prin
ipal if there is an open 
over fUigi2I of X su
h that D��Ui is prin
ipal forevery i 2 I.b. D is Cartier if it is lo
ally prin
ipal.A prin
ipal divisor is obviously lo
ally prin
ipal. Thus div(f) is Cartier for all f 2 C (X)�.Exer
ise 8.1. Let D and E be Cartier divisors. Prove that D +E and �D are Cartier.Exer
ise 8.2. Let D � E be linearly equivalent Weil divisors. Prove that D is Cartier if and onlyif E is Cartier.If D is lo
ally prin
ipal relative to the open 
over fUigi2I , then we 
an �nd fi 2 C (X)� su
hthat D��Ui = div(fi) on Ui. We say that f(Ui; fi)gi2I is lo
al data for D.Exer
ise 8.3. Let f(Ui; fi)gi2I be lo
al data for a Cartier divisor D.a. Prove that fi=fj 2 OX(Ui \ Uj)� for all i; j 2 I. Hint: Use Corollary 7.4.b. Prove that D is e�e
tive if and only if fi 2 OX(Ui) for all i 2 I. Hint: Use Proposition 7.2.For an example of a Weil divisor whi
h is not Cartier, 
onsider the aÆne surfa
e X = V(xy�z2) � C 3. The x-axis Y = V(y; z) is 
ontained in V , so that Y is a Weil divisor on X. However,one 
an show that Y is not a Cartier divisor (see Example 6.11.3 in [5, II.6℄).There is one ni
e 
ase where Weil and Cartier divisors 
oin
ide.



28 David A. CoxTheorem 8.2. Let X be a normal variety su
h that the lo
al ring OX;p is a unique fa
torizationdomain for every p 2 X. Then every Weil divisor on X is Cartier.This is proved in Proposition 6.11 of [5, II.6℄). We should also mention that if X is smooth,then OX;p is a unique fa
torization domain for all p. It follows that Weil and Cartier divisors
oin
ide on smooth varieties.The Standard De�nition. De�nition 8.1 di�ers from what one usually �nds in the literature.The more 
ommon de�nition starts with lo
al data f(Ui; fi)gi2I satisfying part a of Exer
ise 8.3and de�nes two lo
al data f(Ui; fi)gi2I , f(Vj ; gj)gj2J to be equivalent if fi=gj 2 OX(Ui \ Vj)� forall (i; j) 2 I � J . Then a Cartier divisor is an equivalan
e 
lass of lo
al data.There is also more sophisti
ated way to de�ne Cartier divisors whi
h avoids equivalen
e 
lasses.We have the sheaf O�X whose se
tions over U are the invertible elements in the ring OX(U), andwe 
an also regard C (X)� as a 
onstant sheaf on X. Then one 
an show that a Cartier divisor is aglobal se
tion of the quotient sheaf C (X)�=O�X . See [5, page 141℄ for details.The Pi
ard Group. We denote the set of all Cartier divisors on a normal variety X byDiv(X):This is a subgroup of WDiv(X) by Exer
ise 8.1. Furthermore, sin
e every prin
ipal divisor isCartier, we have Div0(X) � Div(X). Then we de�ne the Pi
ard group of X to be the quotient(8:1) Pi
(X) = Div(X)=Div0(X):We will give a more sophisti
ated de�nition of Pi
(X) in x10. (Note that (8.1) explains why thegroup of prin
ipal divisors is denoted Div0(X) rather than WDiv0(X).) Sin
e Div(X) is a subgroupof WDiv(X), we get a 
anoni
al inje
tionPi
(X) ,! Cl(X):In analogy with Exer
ise 2.7, we have the following exa
t sequen
e.Exer
ise 8.4. Let X be a normal variety. Prove that there is an exa
t sequen
e1! OX(X)� ! C (X)� ! Div(X)! Pi
(X)! 0;where the map C (X)� ! Div(X) sends f to div(f) and the map Div(X)! Pi
(X) is the naturalhomomorphism.x9. The Sheaf of a Weil DivisorDe�nition and Basi
 Properties. Let D be a Weil divisor on a normal variety X. We will showthat D determines a sheaf OX(D) of OX-modules on X. As noted in x3, the se
tions of a sheaf Fover U � X 
an be written F(U) = �(U;F) = H0(U;F):For OX(D), we will �nd it 
onvenient to use the middle notation. Thus, given a Zariski open subsetU � X, we de�ne �(U;OX(D)) = ff 2 C (X)� j (div(f) +D)��U � 0g [ f0g:
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tion to Algebrai
 Geometry 29Lemma 9.1. The above de�nition makes OX(D) into a sheaf of OX -modules on X.Proof. We �rst show that �(U;OX(D)) is an additive subgroup of C (X). It suÆ
es to prove thisfor U = X. Let D =Psi=1 aiDi. Then f 2 �(X;OX (D)) if and only if ordDi(f) � �ai for all i. Ifg 2 C (X)� also has this property, then so does f + g sin
eordDi(f + g) � min(ordDi(f); ordDi(g)) � �ai:Sin
e div(�f) = div(f), we see that �(U;OX(D)) is a subgroup of C (X).We next show that this is a module over �(X;OX) = OX(X). Given f 2 �(X;OX(D)) andg 2 �(X;OX), we know that div(f) +D � 0 and div(g) � 0. Thendiv(gf) +D = div(g) + div(f) +D � 0sin
e a sum of e�e
tive divisors is e�e
tive. This proves that gf 2 �(X;OX (D)) and gives thedesired module stru
ture.Finally, we omit the proof that OX(D) is a sheaf in the Zariski topology.Exer
ise 9.1. The trivial Weil divisor is denoted 0. Prove that OX(0) 
oin
ides with the stru
turesheaf OX . Hint: Use Proposition 7.2.We next show that linearly equivalent divisors give isomorphi
 sheaves.Proposition 9.2. If D � E are linearly equivalent Weil divisors, then OX(D) and OX(E) areisomorphi
 as sheaves of OX -modules.Proof. By assumption, we have D = E + div(g) for some g 2 C (X)�. Thenf 2 �(X;OX (D)) () div(f) +D � 0() div(f) +E + div(g) � 0() div(fg) +E � 0() fg 2 �(X;OX (E)):Thus multipli
ation by g indu
es an isomorphism �(X;OX(D)) ' �(X;OX(E)) whi
h is 
learlyan isomorphism of OX(X)-modules.The same argument works over any Zariski open set U , and the isomorphisms are easily seento be 
ompatible with the restri
tion maps.Weil Divisors on an AÆne Variety. Now suppose that X = Spe
(R) is aÆne and let K be the�eld of fra
tions of R. If D is a Weil divisor on X = Spe
(R), then �(X;OX(D)) is an R-submoduleof K. We �rst prove that this R-module is �nitely generated.Proposition 9.3. Let D be a Weil divisor on the normal aÆne variety X = Spe
(R). Then�(X;OX(D)) is a �nitely generated R-module.Proof. We will prove the existen
e of h 2 R�f0g su
h that h�(X;OX (D)) � R. This will implythat h�(X;OX(D)) is an ideal of R and hen
e has a �nite basis sin
e R is Noetherian. It will followimmediately that �(X;OX(D)) is �nitely generated as an R-module.Write D = Psi=1 aiDi. Sin
e Ssi=1Di is a proper subvariety of X, we 
an �nd g 2 R � f0gwhi
h vanishes on ea
h Di. Then ordDi(g) > 0 for every i, so that m ordDi(g) > ai for all i,provided m 2 Z is suÆ
iently large. Sin
e div(g) � 0, it follows that mdiv(g) �D � 0.



30 David A. CoxNow let f 2 �(X;OX(D)). This means div(f) +D � 0, and thusdiv(gmf) = mdiv(g) + div(f) = mdiv(g)�D + div(f) +D � 0sin
e a sum of e�e
tive divisors is e�e
tive. By Proposition 7.2, we 
on
lude that gmf 2 OX(X) =R. Hen
e h = gm 2 R has the desired property.A �nitely generated R-submodule of K is 
alled a fra
tional ideal . Thus Proposition 9.3 showsthat �(X;OX(D)) is a fra
tional ideal.Exer
ise 9.2. Let D � 0 be an e�e
tive divisor on the aÆne variety X = Spe
(R). Prove thatthe fra
tional ideal �(X;OX (�D)) is an ordinary ideal (i.e., �(X;OX (�D)) � R). Hint: As usual,you will use Proposition 7.2.We next show that the R-module �(X;OX (D)) determines the entire sheaf OX(D). Re
allthat if g 2 R is nonzero, the Zariski open set Xg de�ned by the nonvanishing of g is Spe
(Rg),where Rg = fa=gm j a 2 R; m � 0g is the lo
alization of R at g.Proposition 9.4. Let D be a Weil divisor on the normal aÆne variety X = Spe
(R). If g 2 R isnonzero, then(9:1) �(Xg ;OX(D)) = n fgm j f 2 �(X;OX(D)); m � 0o:Proof. Let D =Psi=1 aiDi and write f1; : : : ; sg as a disjoint union I [ J where Di \Xg 6= ; fori 2 I and Dj � V(g) for j 2 J .Suppose that h 2 �(Xg ;OX(D)), so that (div(h)+D)��Xg � 0. Thus ordDi(h) � �ai for i 2 I.Noti
e that there is no 
onstraint on ordDj (h) for j 2 J . However, we do know that g vanishes onDj for j 2 I, so that ordDj (g) > 0. Then we 
an pi
k m 2 Z suÆ
iently large so thatm ordDj (g) + ordDj (h) > 0 for j 2 J:Sin
e div(g) � 0, it follows easily that div(gmh) +D � 0 on X. Thus f = gmh 2 �(X;OX (D)),and then h = f=gm has the desired form. From here, the proposition follows easily.Sin
e the open sets Xg for g 2 R� f0g form a basis for the Zariski topology of X = Spe
(R),Proposition 9.4 shows that the sheaf OX(D)) is uniquely determined by its global se
tions.Coherent Sheaves. The right-hand side of (9.1) is the lo
alization of �(Xg ;OX(D)) at g. Moregenerally, given any �nitely generated R-module M , one 
an de�ne its lo
alization Mg , and thenone gets a unique sheaf fM on X = Spe
(R) su
h that�(Xg ;fM ) =Mgfor any g 2 R� f0g. See [5, II.5℄ for details.For example, if X = Spe
(R), Theorem 3.1 of x3 implies eR = OX , and if D is a Weil divisoron X, Proposition 9.4 implies fM = OX(D) for M = �(X;OX(D)).This leads to the following general de�nition. Suppose that F is a sheaf of OX -modules on anarbitrary variety X. Then F is 
oherent if there is an aÆne open 
over fUigi2I of X su
h that forevery i 2 I, there is a �nitely generated OX(Ui)-module Mi su
h thatF ��Ui = fMi:
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tion to Algebrai
 Geometry 31The simplest example of a 
oherent sheaf is OX . Furthermore, the above dis
ussion shows thatif D is a Weil divisor on a normal variety X, then OX(D) is also 
oherent. We will learn moreproperties of OX(D) in the next se
tion.x10. Invertible Sheaves and Line BundlesWe next dis
uss an espe
ially ni
e 
lass of sheaves.Invertible Sheaves. Let F be a sheaf of OX modules on a variety X. Then F is invertible if itis lo
ally trivial, i.e., if there is a Zariski open 
over of fUigi2I of X su
h that F��Ui ' OX ��Ui .It follows immediately that OX is invertible. A more interesting result is the following 
har-a
terization of when the sheaves OX(D) from x4 are invertible.Theorem 10.1. Let D be a Weil divisor on a normal variety X. Then OX(D) is an invertiblesheaf if and only if D is a Cartier divisor.Proof. First suppose that D is Cartier. Sin
e invertibility is a lo
al property and D is lo
allyprin
ipal, we may assume that X = Spe
(R) is aÆne and D = div(f) for f 2 K. Then D � 0, sothat by Proposition 9.2, we have OX(D) ' OX(0) = OX ;where the last equality is by Exer
ise 9.1.Going the other way, suppose that OX(D) is invertible. We need to prove that D is lo
allyprin
ipal. By restri
ting to a suitable aÆne open subset, we 
an assume that X = Spe
(R) andthat OX ' OX(D). Taking global se
tions, we get an isomorphismR ' �(X;OX (D)) � K:Under this isomorphism, suppose that 1 2 R maps to 1=g 2 �(X;OX (D)). The proof of Proposition9.2 shows that if we set E = D�div(g), then g�(X;OX (D)) = �(X;OX (E)). Thus �(X;OX (E)) =R, so that OX = OX(E). If we 
an show that this for
es E = 0, then D = div(g) will follow,proving that D is lo
ally prin
ipal and hen
e Cartier.Thus we may assume OX = OX(E). Then 1 2 �(X;OX (E)), whi
h implies E � 0. IfE 6= 0, then some irredu
ible hyperfa
e Y appears in E with positive 
oeÆ
ient. Observe thatany aÆne open subset of X whi
h meets Y has the same property. By Exer
ise 10.1 below, we
an then assume that div(h) = Y for some h 2 R. It follows that div(1=h) + E � 0, so that1=h 2 �(X;OX(E)) = �(X;OX) = R. Sin
e h is also in R, this implies that h is invertible, whi
hmeans div(h) = 0. This 
ontradi
ts div(h) = Y and proves E = 0, as desired.Exer
ise 10.1. Let Y be an irredu
ible hypersurfa
e in a normal variety X. The goal of thisexer
ise is to �nd an aÆne open subset U and a rational fun
tion h 2 C (X) su
h that Y \ U 6= ;and div(h)��U = Y \ U .a. Explain why there is h 2 OX;Y with ordY (h) = 1.b. Show that h from part a has the following two properties:� div(h) = Y +Prj=1 bjEj , where the Ej are distin
t from Y .� h is de�ned on a Zariski open set U 0 su
h that U 0 \ Y 6= ;.
. Show that U 0 � (E1 [ � � � [Er) is nonempty and has nonempty interse
tion with Y .d. Now show that the desired aÆne open subset U exists.
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an also improve Proposition 492 as follows.Exer
ise 10.2. Let D and E be Cartier divisors on a normal variety X. Then D � E if and onlyif OX(D) ' OX(E) as OX-modules. Hint: Adapt the argument of Theorem 10.1.A deeper result is the following. See Proposition 6.15 of [5, II.6℄ for a proof.Theorem 10.2. Let X be a normal variety. Then every invertible sheaf on X is isomorphi
 toOX(D) for some Cartier divisor D on X.We remark that invertible sheaves are sometimes 
alled lo
ally free sheaves of rank one.The Pi
ard Group. Given invertible sheaves F and G on X, one easily proves that(10:1) F 
OX G and F_ = HomOX (F ;OX )are also invertible. It is also easy to show that the 
anoni
al map F 
OX F_ ! OX indu
es anisomorphism F 
OXF_ ' OX ;whi
h explains the name \invertible". These properties show that the set of isomorphism 
lassesof invertible sheaves on X has a natural group stru
ture under tensor produ
t. We 
all(10:2) Pi
(X) = fisomorphism 
lasses of invertible sheaves on Xg:the Pi
ard group of X,Sin
e we already de�ned Pi
(X) in (8.1) of x8, we need to explain why these de�nitions areequivalent. We begin with the following important result, whose proof we omit (see Proposition 6.13of [5, II.6℄ for a proof).Theorem 10.3. If D and E are Cartier divisors on a normal variety X, then there are 
anoni
alisomorphisms OX(D +E) ' OX(D)
OX OX(E)OX(�D) ' OX(D)_:If we 
ombine Theorem 10.2 and 10.3, we get a surje
tive homomorphism Div(X) ! Pi
(X),and Exer
ise 5.2 shows that the kernel is Div0(X). We 
on
lude that for normal varieties, the twode�nitions 
oin
ide. However, the de�nition given in (10.2) is more general, sin
e it makes sensefor any variety X.We should also note that one 
an de�ne Pi
(X) using sheaf 
ohomology. Here is the basi
idea. Let X be a normal variety (for simpli
ity), and 
onsider the exa
t sequen
e of sheaves(10:3) 1! O�X ! C (X)� ! C (X)�=O�X ! 1:In x8, we mentioned that Div(X) = H0(X; C (X)�=O�X). Taking sheaf 
ohomology, (10.3) gives thelong exa
t sequen
e0! H0(X;O�X)! H0(X; C (X)�)! H0(X; C (X)�=O�X)! H1(X;O�X )! H1(X; C (X)�)!One 
an show that H1(X; C (X)�) = 0, and then the above long exa
t sequen
e redu
es to1! OX(X)� ! C(X)� ! Div(X)! H1(X;O�X )! 0:
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 Geometry 33Comparing this to Exer
ise 8.4, we 
on
lude that H1(X;O�X ) = Pi
(X). This is the sheaf-theoreti
de�nition of the Pi
ard group.Rank One Re
exive Sheaves. Now suppose that D is a Weil divisor on a normal variety X. IfD is not Cartier, then we know that OX(D) is not invertible. So what kind of sheaf is it?Given any sheaf F of OX -modules, we 
an de�ne F_ as in (10.1), and there is a 
anoni
almap F ! F__. Then we say that F is re
exive of rank one if:� There is a nonempty Zariski open set U su
h that F ��U is trivial.� F is torsion-free.� The map F ! F__ is an isomorphism.Any invertible sheaf is re
exive. Of more interest is the following result. A proof 
an be found in[2, Chapter VII℄ and [8, Appendix to x1℄.Proposition 10.4. If D is a Weil divisor on a normal variety X, then OX(D) is a re
exive sheafof rank one.The dual of a re
exive sheaf of rank one is again re
exive of rank one, though the tensorprodu
t F 
OX G of re
exive sheaves of rank one need not be re
exive of rank one. However, thedouble dual(10:4) (F 
OX G)__is re
exive of rank one. Furthermore, if D and E are Weil divisors on X, thenOX(D +E) ' (OX(D)
OXOX(E))__:One 
an also show that up to isomorphism, every re
exive sheaf of rank one onX 
omes from a Weildivisor on X. It follows that the 
lass group Cl(X) 
an be regarded as the group of isomorphism
lasses of rank one re
exive sheaves under the produ
t (10.4). Details of all of this 
an be foundint [2, Chapter VII℄ and [8, Appendix to x1℄.In most of algebrai
 geometry, invertible sheaves are more important than rank one re
exivesheaves. However, there are situations where rank one re
exive sheaves o

ur naturally. An exampleis given by the 
anoni
al sheaf of a Cohen-Ma
aulay variety X, whi
h is only re
exive of rank one(unless the variety is Gorenstein, in whi
h 
ase the 
anoni
al sheaf is invertible). The 
anoni
alsheaf plays an important role in duality theory.Line Bundles. A line bundle over a variety X 
onsists of a map of varieties � : L! X su
h thatX has an open 
over fUigi2I with the following two properties:� For ea
h i 2 I, here is an isomorphism fi : ��1(Ui) ' Ui � C su
h that � = �1 Æ fi, where�1 : Ui � C ! Ui is proje
tion on the �rst fa
tor.� For ea
h pair i; j 2 I, then there is gij 2 OX(Ui \ Uj)� su
h that the 
ompositionfj Æ f�1i : (Ui \ Uj)� C ! (Ui \ Uj)� Cis given by (x; �) 7! (x; gij(x)�).Sin
e the gij 2 OX(Ui \ Uj)� are built from fj Æ f�1i , it follows easily that they satisfy the 
o
y
le
ondition(10:5) gik(x) = gij(x)gjk(x) for i; j; k 2 I x 2 Ui \ Uj \ Uk:



34 David A. CoxThe trivial line bundle is given by �1 : X � C ! X, where �1 is proje
tion on the �rst fa
tor.Given x 2 X and a line bundle � : L ! X, we 
all Lx = ��1(x) the �ber of L over x. Ifx 2 Ui, we 
an use fi to de�ne an isomorphism Lx ' C . If we also have x 2 Uj , then we get adi�erent isomorphism Lx ' C , but the two are related by multipli
ation by gij(x). It follows thatLx has a natural stru
ture as a 1-dimensional ve
tor spa
e, i.e., a 
omplex line. Sin
e L is theunion of the Lx, this explains the term \line bundle".The Sheaf of Se
tions of a Line Bundle. Let � : L ! X be a line bundle over X. If U � Xis Zariski open, then a se
tion of L over U is a morphism s : U ! L su
h that � Æ s(x) = x for allx 2 U . Then set(10:6) �(U;L) = H0(U;L) = fall se
tions of L over Ug:Sin
e the �bers are ve
tor spa
es, we 
an add se
tions and mutiply them by elements of OX(U).It follows that (10.6) de�nes a sheaf of OX -modules. We will denote this sheaf by OX(L).Exer
ise 10.3. Let �1 : X � C ! X be the trivial bundle.a. Show that a se
tion over U � X is des
ribed by s(x) = (x; f(x)), x 2 U , for a uniquef 2 OX(U).b. Show that the sheaf de�ned by (10.6) is OX .Now let L be any line bundle over X. Sin
e lo
ally L looks like Ui � C , Exer
ise 10.3 showsthat lo
ally, the sheaf OX(L) looks like OUi ' OX ��Ui . We have thus proved the following result.Proposition 10.5. If L is a line bundle over X, then OX(L) is an invertible sheaf.We 
an also reverse this pro
ess by showing that every invertible sheaf is the sheaf of se
tionsof some line bundle. In the spe
ial 
ase when X is normal, we 
an do this as follows. Supposethat L is an invertible sheaf. By Theorem 10.2, L ' OX(D) for some Cartier divisor D. Then letf(Ui; fi)gi2I be lo
al data for D, so that div(fi)��Ui = D��Ui for all i.With this set-up, let gij = fi=fj , and note that gij 2 OX(Ui \ Uj)� by Exer
ise 8.3. Further-more, it is obvious that the gij satisfy 
o
y
le 
ondition (10.5). We saw in x3 how we 
an 
onstru
tX from the Ui by gluing Ui and Uj together along Ui \ Uj . In the same way, we 
an glue Ui � Cand Uj � C together by identifying(10:7) (x; �) ! (x; gij(x)�);where (x; �) 2 (Ui \ Uj)� C � Ui � C(x; gij(x)�) 2 (Ui \ Uj)� C � Uj � C :The 
o
y
le 
ondition (10.5) shows that thes identi�
ations satisfy the 
ompatibility 
onditionsfrom the subse
tion \Gluing Together AÆne Varieties" in x3. It follows that we 
an glue togetherthe Ui� C to get a variety L. In the same way, the proje
tions Ui� C ! Ui pat
h together to givea morphism � : L! X. We will omit the proof of the following proposition.Proposition 10.6. � : L ! X is a line bundle whose sheaf of se
tions is isomorphi
 to theinvertible sheaf L ' OX(D) we began with.It follows that we have three 
losely related obje
ts: Cartier divisors, invertible sheaves, andline bundles. In algebrai
 geometry, it is 
ustomary (though slightly ina

urate) to use the terms\invertible sheaf" and \line bundle" inter
hangeably.
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 Geometry 35The Zero Divisor of a Se
tion. Suppose that the sheaf of se
tions of a line bundle L is theinvertible sheaf OX(D), where D is a Cartier divisor. Then we 
an think of a global se
tion intwo very di�erent ways: as a se
tion s : X ! L su
h that � Æ s = 1X , and as a rational fun
tionf 2 C (X)� su
h that div(f) +D � 0. How are these related?The easiest way to see the link between these notions of \global se
tion" is to de�ne the zerodivisor of a nonzero se
tion s : X ! L. Given su
h an s, 
onsider an open 
overing fUigi2I whi
htrivializes the bundle. Then, using the restri
tion of s to Ui, we get the 
omposition(10:8) si : Ui ! ��1(Ui) ' Ui � C ! C :This is a morphism, so that si 2 OX(Ui). Furthermore, one 
he
ks that si = gijsj on Ui \ Uj .Sin
e gij 2 OX(Ui \ Uj)�, It follows easily that the divisors div(si) on Ui pat
h together to givea divisor on X. This divisor is 
learly lo
ally prin
ipal (it equals div(si) on Ui). Thus we get aCartier divisor div0(s) 2 Div(X):Furthermore, div0(s) � 0 sin
e ea
h si 2 OX(Ui). This relates to the global se
tions of OX(D) asfollows.Theorem 10.7. Let L be the line bundle 
orresponding to the invertible sheafOX(D), and supposethat s 2 �(X;L)� f0g 
orresponds to f 2 �(X;OX (D))� f0g. Thendiv0(s) = div(f) +D:Proof. First note that both sides of the equation are e�e
tive divisors. Given f 2 C (X)� withdiv(f) +D � 0, we 
an de�ne a se
tion s of L as follows. We 
onstru
ted L using the lo
al dataf(Ui; fi)gi2I for D. Then D��Ui = div(fi)��Ui , so thatdiv(ffi)��Ui = (div(f) +D)��Ui � 0:If we set si = ffi, then Proposition 7.2 shows that si 2 OX(Ui). Furthermore, the 
onstru
tionof L shows that the se
tions Ui ! Ui � C de�ned by x 7! (x; si(x)) pat
h to give a se
tion s of Lover X. (This is part of the proof of Proposition 10.6.) Sin
e div0(s) is 
onstru
ted by pat
hingtogether the divisors div(si) = div(ffi), it follows easily that div0(s) = div(f) +D, as 
laimed.The divisor div0(s) tells us where the se
tion s vanishes. However, being a divisor, div0(s)re
ords more than just the hypersurfa
es Y � X where s is zero|the 
oeÆ
ient of Y in div0(s)also tells us to what order s vanishes on Y .Exer
ise 10.4. Let L be a line bundle over X.a. Show that the divisors div0(s) for s 2 �(X;L)� f0g are all linearly equivalent.b. Let D be an e�e
tive Cartier divisor on X whi
h is linearly equivalent to div0(s) for somes 2 �(X;L)� f0g. Prove that D = div0(t) for some t 2 �(X;L)Given a line bundle L over X, the set of e�e
tive divisorsjLj = fdiv0(s) j s 2 �(X;L)� f0ggis 
alled a 
omplete linear system. This terminology is justi�ed by part b of the Exer
ise 10.4.Exer
ise 10.5. If L is a line bundle on a 
omplete variety X. Prove that jLj 
an be identi�edwith the proje
tive spa
e P(�(X;L)). Hint: Exer
ise 3.4 will be useful.



36 David A. CoxFinally, we dis
uss the \quotient" of two se
tions of a line bundle. If s; t are nonzero se
tionsof L, then for ea
h x 2 X, s(x) and t(x) are elements of the one-dimensional ve
tor spa
e Lx. Thisspa
e doesn't have a 
anoni
al basis, so we 
an't regard s(x) and t(x) as numbers. But if t(x) 6= 0,then the \quotient" s(x)=t(x) makes sense: it the unique number � su
h that s(x) = �t(x). Thissuggests that s=t should be a rational fun
tion on X.Exer
ise 10.6. Let s; t be nonzero se
tions of L over X, and let fUigi2I be an open 
over of Xwhi
h trivializes L.a. By working on Ui, show that s=t = si=ti, where si is as in (10.8) and ti is de�ned similarly.b. Explain why si=ti = sj=tj as rational fun
tions on Ui \ Uj .Part b gives a well-de�ned element of C (X)� whi
h we denote s=t.Exer
ise 10.7. Suppose that L is the line bundle built from the Cartier divisor D on X. Let s; tbe nonzero se
tions of L over X whi
h 
orrespond to f; g 2 �(X;OX (D)). Prove that the rationalfun
tion s=t of Exer
ise 10.6 is given by f=g.Invertible Sheaves on Proje
tive Spa
e. Let x0; : : : ; xn be homogeneous 
oordinates on Pn.Re
all from x2 that Pn is 
overed by the open sets Ui = Pn �V(xi) and thatC (Pn) = nfg j f; g 2 C [x0; : : : ; xn℄ homogeneous of equal degree, g 6= 0o:Now let H = V(x0) � Pn. This is 
learly a divisor, and is Cartier sin
e Pn is smooth. Ourgoal is to determine the global se
tions of OPn(dH) for d > 0.Exer
ise 10.8. Show that f(Ui; xd0=xdi )g0�i�n is lo
al data for dH.We 
an now des
ribe the global se
tions of OPn(dH).Proposition 10.8. If d > 0, then the global se
tions of OPn(dH) are�(Pn;OPn(dH)) = n fxd0 j f is homogeneous of degree do:Proof. Let f=g 2 �(Pn;OPn(dH)), where f and g are relatively prime. Then div(f=g) + dH � 0.If we restri
t to Ui, then this be
omes (div(f=g) + div(xd0=xdi ))��Ui � 0. Equivalently,div(f=g � xd0=xdi )��Ui � 0;so that f=g � xd0=xdi 2 OPn(Ui). Can 
an think of Ui as a 
opy of C n with variables xjxi for j 6= i. Iff; g have degree m, then we 
an write f=g � xd0=xdi as(10:9) f�x0xi ; : : : ; xnxi �g�x0xi ; : : : ; xnxi � � �x0xi �d:For ea
h i, this must be a polynomial in xjxi for j 6= i. When i = 0, the se
ond fa
tor in (5.9) is 1,whi
h means that the denominator of the �rst fa
tor must be 
onstant sin
e f and g are relativelyprime. Multiplying f and g by suitable 
onstants, we 
an assume g�1; x1x0 ; : : : ; xnx0 � = 1, and theng = xm0 follows sin
e g is homogeneous of degree m.
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 Geometry 37Furthermore, if we then 
onsider (10.9) with i 6= 0, then f�x0xi ; : : : ; xnxi ��x0xi �d�m is a polynomialin xjxi for j 6= i. Sin
e f and g = xm0 are relatively prime, it follows that d � m. Then multiplyingf and g by xd�m0 shows that f and g have the desired form.Conversely, we need to show that f=xd0 lies in �(Pn;OPn(dH)) whenever f is homogeneous ofdegree d. This follows easily using the above methods. We omit the details.Exer
ise 10.9. Show that �(Pn;OPn(dH)) = f0g if d < 0.It is 
ustomary to write OPn(dH) as OPn(d). Then, up to isomorphism, the global se
tions ofOPn(d) form the ve
tor spa
e of homogeneous polynomials of degree d.Exer
ise 10.10. Show that every invertible sheaf on Pn is isomorphi
 to OPn(d) for some d 2 Z.Referen
es1. M. F. Atiyah and I. G. Ma
Donald, Introdu
tion to Commutative Algebra, Addison-Wesley,Reading, MA, 1969.2. N. Bourbaki, Alg�ebre 
ommutative, Hermann, Paris, 1965. English translation, Addison-Wesley,Reading, MA, 1972.3. D. Cox, J. Little and D. O'Shea, Ideals, Varieties, and Algorithms, Se
ond Edition, Springer-Verlag, New York-Berlin-Heidelberg, 1997.4. D. Eisenbud and J. Harris, The Geometry of S
hemes, Springer-Verlag, New York-Berlin-Heidelberg, 2000.5. R. Hartshorne, Algebrai
 Geometry , Springer-Verlag, New York-Berlin-Heidelberg, 1977.6. H. Matsumura, Commutative Ring Theory , Cambridge Univ. Press, Cambridge, 1986.7. D. Prill, Lo
al 
lassi�
ation of quotients of 
omplex manifolds by dis
ontinuous groups, DukeMath. J. 34 (1967), 375{386.8. M. Reid, Canoni
al 3-folds, in Journ�ees de g�eom�etrie alg�ebrique d'Angers (A. Beauville, ed.),Sijtho� &Noordho�, Alphen aan den Rijn, 1980, 273{310.9. J.-P. Serre, G�eom�etrie alg�ebrique et g�eom�etrie analytique, Ann. Inst. Fourier 6 (1956), 1{42.10. B. Sturmfels, Algorithms in Invariant Theory , Springer-Verlag, New York-Berlin-Heidelberg,1993.11. O. Zariski and P. Samuel, Commutative Algebra, Volume I, Van Nostrand, Prin
eton, NJ, 1958.Reprint by Springer-Verlag, New York-Berlin-Heidelberg, 1975.


