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¢1. Affine Varieties

Basic Definitions. For simplicity, we will work over the complex numbers C. Then, given poly-

nomials fi,..., fs € Clzy,...,z,], we get the affine variety
V(fi,--- fs) ={a € C" | fi(a) = -+ = fs(a) = 0}
More generally, if I C C[z1,...,z,] is an ideal, then we define

V(I)={a€C"| f(a)=0forall f €I}.

Exercise 1.1. Let I = (f1,..., fs) C C[zy,...,z,] be the ideal generated by f1,..., fs. Show that
V(I)=V(f1,...,fs). (All ideals in C[xy,...,x,] are of this form by the Hilbert Basis Theorem.)

Conversely, given an affine variety V' C C", we get the ideal
I(V) ={f €Clz1,...,z,] | f(a) =0foralla € V}.

Exercise 1.2. Let V C C" be an affine variety and I C C[zy,...,z,] an ideal. Show that:
a. V. =V(I(V)).
b. I c VI CI(V(I)), where VT = {f € Clz1,...,2,] | f™ € I, m > 1} is the radical of I.

The above exercise actually works over any field. But since C is algebraically closed, we also
have the following basic result of Hilbert.

Hilbert Nullstellensatz. For any ideal I C Clx1,...,x,], we have VT = I(V(I)).

A proof can be found in Chapter 4 of [3]. This theorem allows us to translate algebra into
geometry and vice versa. Here is an example.

Exercise 1.3. Use the Nullstellensatz to show the following.
a. Every maximal ideal of C[zy,...,z,] is of the form (z; —ay,...,z, —a,), where a; € C. Thus
there is a one-to-one correspondence between points of C" and maximal ideals of Clz1, ..., z,].
b. Anideal I is radical if I = +/I. Show that the correspondence of part a extends to a one-to-one
correspondence

affine varieties of C" <— radical ideals of C[z1,...,zy].
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Coordinate Rings. We next consider polynomial functions on an affine variety V. Note that two
polynomials f,g € C[zy,...,z,] give the same function on V' if and only if their difference lies in
I(V'). Thus the ring of such functions is naturally isomorphic to the quotient ring

C[V] = Clzy, . .., za]/L(V).

This ring is called the coordinate ring of V. There is a close relation between V and C[V]. The
following two exercises explore aspects of this relation.

Exercise 1.4. Two affine varieties V; C C" and Vo C C™ are isomorphic if there are polynomial
maps F : C" — C™ and G : C™ — C" such that F(V;) = V5, G(V3) = Vi, and the compositions
F oG and G o F are the identity when restricted to V5 and Vi respectively. Prove that two affine
varieties are isomorphic if and only if their coordinate rings are isomorphic C-algebras.

Exercise 1.5. Let V' C C" be an affine variety.
a. Given a = (a1,...,a,) € C", show that a € V if and only if I(V) C (z1 — a1,...,Z, — ap).
b. Conclude that there is a one-to-one correspondence between points of affine variety V' and
maximal ideals of its coordinate ring C[V].

We can characterize coordinate rings of affine varieties as follows.

Proposition 1.1. A C-algebra R is isomorphic to the coordinate ring of an affine variety if and
only if R is a finitely generated C-algebra with no nonzero nilpotents (i.e., if f € R satisfies f™ = 0,
then f =0).

Proof. If R=C[V] for V C C", then we need only show that R has no nonzero nilpotents. This
is easy, for if f € C[z1,...,z,] and f™ vanishes on V, then so does f. Thus I(V) is radical, which
means that C[V] = Clzy,...,,]/I(V) has no nonzero nilpotents.

Conversely, R finitely generated as a C-algebra implies that there is a surjective homomorphism
¢ : Clzy,...,x2,] & R. Let I = ker ¢, and note that I = VT since R has no nonzero nilpotents.
Thenlet V = V(I) C C". The coordinate ring of V' is C[x1, ..., z,]|/I(V). Using the Nullstellensatz,
we see that I(V) = I(V(I)) = VI = I. Thus C[V] is isomorphic to R. O

To emphasize the close relation between V' and C[V], we will sometimes write
(1.1) V' = Spec(C[V]).

Furthermore, this can be made canonical by identifying V' with the set of maximal ideals of C[V]
via Exercise 1.5. This is part of a general contruction in algebraic geometry which takes any
commutative ring R and defines the affine scheme Spec(R). The general definition of Spec uses all
prime ideals of R and not just the maximal ideals as we have done.* Readers wishing to learn more
about schemes should consult [4] and [5].

Subvarieties and the Zariski Topology. Given an affine variety V' C C", a subset W C V is
a subvariety if W is also an affine variety. This easily implies that I(V) C I(W). In terms of the
coordinate ring R = C[V], we conclude that there is a one-to-one correspondence

subvarieties of Spec(R) +— radical ideals of R.

* Thus (1.1) should be written V' = Specm(C[V]), the maximal spectrum of C[V].
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An affine variety has two interesting topologies. First, we have the induced topology from the
usual topology on C". This is sometimes called the classical topology. The other topology is defined
as follows. Given a subvariety W C V, the complement V — W is called a Zariski open subset of
V. One easily sees that the Zariski open subsets of V form a topology on V', which is called the
Zariski topology. Since every subvariety of V' is closed in the classical topology (polynomials are
continuous), it follows that every Zariski open subset is also open in the classical topology.

Exercise 1.6. Zariski open subsets tend to be large. Here are some examples.
a. Show that the Zariski topology on C is the cofinite topology. This is the topology whose open
sets are () and complements of finite sets.
b. Show that the Zariski topology on C" is T} but not T5.

Given a subset S C V, its closure S in the Zariski topology is the smallest subvariety of V/
containing S. We call S the Zariski closure of S. It is easy to give examples where this differs from
the closure in the classical topology.

Finally, we remark that some Zariski open subsets of an affine variety V are themselves affine
varieties. Given f € C[V] — {0}, let Vs ={a €V | f(a) #0} C V.

Lemma 1.2. V; is Zariski open in V' and has a natural structure as an affine variety.

Proof. Suppose V C C" and I(V) = (f1,..., fs). Also pick g € C[zy,...,z,] so that f = g+I(V).
Then Vy =V —V(f1,..., fs,9), so that V; is Zariski open in V.

Consider a new variable y and let W = V(f1,..., fs,1—gy) C C" xC. Then (a,b) € C" xC lies
in W if and only if a € V (and then b = 1/g(a)). In other words, the projection map C" x C — C"
maps W bijectively to Vy. Thus we can identify V; with the affine variety W C C" x C. O

Irreducible Varieties and Rational Functions. An affine variety V is irreducible if it cannot
be written as union of subvarieties V' = Vi U V5 where V; # V. We can think of irreducbility in
algebraic terms as follows.

Exercise 1.7. Let V' C C" be an affine variety. Prove that V is irreducible & I(V) C Clzy, ..., z,]
is a prime ideal < the coordinate ring C[V] is an integral domain.

Here is an example we will refer to later.

Exercise 1.8. Let V = V(zy — zw) C C*.
a. Show that zy — zw is irreducible in C|z, y, z, w].
b. Conclude that I(V) = (xy — zw) and that V is irreducible. Thus the coordinate ring of V' is
CLV] = Cla,y, 7, wl/ ey — 2w,
c. Prove that C[V] ~ Clab, cd, ac,bd] C Cla,b,c,d]. Hint: Prove that V' can be parametrized
surjectively by (a,b,c,d) — (ab,cd, ac,bd).

When V is irreducible, the integral domain C[V] has a field of fractions denoted C(V'). This
is the field of rational functions on V. For example, when V = C", C[V] is the polynomial ring
Clz1,...,z,]) and C(V) is the field of rational functions C(z1, ..., z,). In general, given f/g € C(V),
the equation g = 0 defines a proper subvariety W C V and f/g : V — W — C is a well-defined
function. This is written f/g: V—— C and is called a rational function on V.

Exercise 1.9. If V' is irreducible and f € C[V] is nonzero, then the localization of C[V] at f is

ClV]y ={g/ff €C(V) | g C[V], £>0}.
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Prove that Spec(C[V]¢) is the affine variety V; from Lemma 1.2.

An important result is that every affine variety V can be written as a union
V=Wu---uV,

where each Vj is irreducible and V; ¢ U#i Vi. We call Vi,...,V, the irreducible components of V.
The existence and uniqueness of this decomposition is proved in Chapter 4 of [3].

Finally, some references use different terminology. For example, in Hartshorne’s book [5],
V(I) C C" is called an “algebraic set” and the term “affine variety” is reserved for the case when
V(I) is irreducible. We will not use this terminology, though we should point out that our main
objects of interest are toric varieties, which are by definition irreducible.

Normal Affine Varieties. Let R be an integral domain with field of fractions K. Then R is
integrally closed if every element of K which is integral over R (meaning that it is a root of a monic
polynomial in R[z]) actually lies in R. Here are two examples:

e One can easily show that any UFD is integrally closed.

e The set Ok of all algebraic integers in a number field K is integrally closed.
Exercise 1.10 below will give an example of an integral domain which is not integrally closed.

Let V' be an irreducible affine variety, so that C[V] is an integral domain. Then V' is normal

if C[V] is integrally closed. For example, C" is normal since its coordinate ring C[zy,...,z,] is a
UFD and hence integrally closed. Here is an example of a non-normal affine variety.

Exercise 1.10. Let C = V(2% — y?) C C?. This is a plane curve with a cusp at the origin.
a. Show that C is irreducible and that C[C] = C[z,y]/(z> — y?).
b. Let X and Y be the cosets of z and y in C[C] respectively. This gives Y/X € C(C). Show
that Y/X ¢ C[C] and that (Y/X)? = X.
c. Explain why part b implies that C[C] is not integrally closed.

Another example is the irreducible variety V = V(zy — zw) C C* studied in Exercise 1.8. It
is not obvious, but V' is normal. This can be proved using the description

C[V] = Clab, cd, ac,bd] C Cla, b, c,d]

given in part ¢ of Exercise 1.8. The ring Clab, cd, ac,bd] is a semigroup algebra. Then normality
follows from a property called saturation.

For us, normality is crucial because toric varieties are all normal. (One can define non-normal
toric varieties, but the nicest results hold only in the normal case.)

Finally, any irreducible affine variety V has a normalization. To define this, first consider

C[V]) ={a € C(V) : « is integral over C[V]}.

We call C[V]" the integral closure of C[V]. It is easy to see that C[V]’ is integrally closed. With
more work, one can also show that C[V]" is a finitely generated C-algebra (see Theorem 9 on
pages 267-268 of [11]). This gives the normal affine variety

V' = Spec(C[V]")

which is the normalization of V. Note that the natural inclusion C[V] C C[V]" = C[V'] corresponds
to a map V' — V. This is called the normalization map.
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Exercise 1.11. Let C = V(2® — y2) C C? be the curve considered in Exercise 1.10.
a. Let X and Y have the same meaning as in Exercise 1.10. Show that C[Y/X] C C(C) is the

integral closure of C[C].
b. Show that the normalization map is the map C — C defined by ¢ — (¢2,¢3).

§2. Projective Varieties

Projective Space. We define n-dimensional projective space to be the set

P" = (C"T - {0})/~,
where ~ is the equivalence relation on C"** — {0} given by
(2.1) (ag,...,an) ~ (bo,...,b,) <= thereis A € C* with (ao,...,a,) = A(bo,...,bn).

Here, we use C* to denote C — {0}, which is a group under multiplication. As we vary A € C*, the
points A(bg, ..., by,) lie on a line through the origin. Thus we get a bijection

P" ~ {lines through the origin in C"*'}.

Exercise 2.1. P" contains the subset (C*)"*1/ ~. Note also that (C*)"*! is a group under
component-wise multiplication.
a. Show that on (C*)"*!, the equivalence classes of ~ are the cosets of the subgroup H =
{(\,...,A) | A€ C*} C (C*)™*L. Conclude that (C*)"*1/H C P".
b. Construct a group isomorphism (C*)"*/H ~ (C*)".

Exercise 2.1 shows that P" contains an isomorphic copy of (C*)™. P" is a classic example of a
toric variety.
We note that P™ has a classical topology inherited from the usual topology on C"**! — {0}.

Exercise 2.2. Let S2"*! be the unit (2n + 1)-sphere centered at the origin in C"*.
a. Show that the natural map S?"*! — P” is onto and conclude that P" is compact.
b. Show that the fibers of $2"+! — P" are isomorphic to S*. This is the Hopf fibration.

Homogeneous Coordinates. A point p of P" will be written (ao,...,a,). This is only unique
up to the equivalence relation (2.1). We call (ag,...,a,) homogeneous coordinates of p. In some
books, this is written p = [ag,...,a,] or p = (ap:...:a,) to emphasize the non-unique nature of
these coordinates. We prefer to write p = (ao, ..., ay), where it will be clear from the context that
we are using homogeneous coordinates.

Projective Varieties and Homogeneous Ideals. A polynomial f € Clz,...,x,] is homoge-
neous of degree d if every term of f has total degree d. This is equivalent to the identity

(2.2) fAzo, ..., dzn) = Xf(zo, ... zn).

Exercise 2.3. Show that any f € C[zo,...,z,] can be written uniquely in the form f =5, fa
where f; is homogeneous of degree d. We call f; the homogeneous components of f. B
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Now suppose that f € C[zy,...,z,] is homogeneous of degree d. Given p € P", we can’t define
“f(p)” since using p = (ay,...,a,) would give
f(p) - f(a'()v 7a'n)v
while using p = A(ay,. .., a,) would give

f(p) = f(Xao, ..., \ay) = X f(ao, ..., a,).

However, the equation f(p) = 0 is well-defined since A € C*. Thus, homogeneous polynomials
fi,---, fs € Clzo,...,x,] define the projective variety

V(fi,..., fs) ={a € P"| fi(a) =--- = fs(a) =0} C P".

To formulate this in terms of ideals, we say that an ideal I C C|xzo,...,z,] is homogeneous if
it is generated by homogeneous polynomials.

Exercise 2.4. Show that an ideal I C C|xg,...,z,] is homogeneous if and only if for all f €
Clzo,...,zn], we have f € I < I contains the homogeneous components of f.

If I C Clzyg,...,z,] is a homogeneous ideal, then we have the projective variety
V(I)={aecC"| f(a) =0forall f €l}.
Conversely, given a projective variety V' C C", we get the homogeneous ideal
I(V) ={f € Clzo,...,2,] | f(a) =0 for all a € V}.

Exercise 2.5. We call (z,...,z,) C Clzo,...,z,] the irrelevant ideal. Show that V(I) = 0
whenever I contains a power of the irrelevant ideal.

Exercise 2.5 is actually part of the projective version of the Nullstellensatz, which goes as
follows. We refer the reader to [3, Chapter 8] for a proof.

Projective Nullstellensatz. Let I C C[zo,...,x,] be a homogeneous ideal.
a. V(I) =0 if and only if (zy,...,z,)™ C I for some m > 0.
b. V(I) # 0 implies I(V(I)) = V1.

Most of the concepts defined for affine varieties in C" can be extended to projective varieties
in P" in the obvious way:
W C V is a subvariety of a projective variety V' C P" if W is a projective variety in P".
If V_.C P" is a projective variety, then we call P" — V' a Zariski open subset of P".
The Zariski topology is the topology on P" whose open sets are the Zariski open sets.
The Zariski closure S of a subset S C P" is the smallest projective variety containing S.

Rational Functions on Projective Space. We've already seen that a homogeneous polynomial
in C[zy,...,z,] does not give a function on P". However, the quotient of two such polynomials
works, provided they have the same degree. More precisely, suppose that f,g € C[zy,...,z,] have
degree d and that g # 0. Then (2.2) shows that we get a well-defined function

f

p :P"—-V(g9) — C
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As in §1, we write this as f/g : P"—— C and say that f/g is a rational function on P".
Exercise 2.6. The set of all rational functions on P" is

C(Pr") = {g | f,9 € Clzg, ..., z,] homogeneous of equal degree, g # 0}.
Prove that C(P") is subfield of C(xzy,...,z,).

Mappings Between Projective Varieties. Suppose that V' C P" is a projective variety and
fos--vs fm € Clzy, ..., z,] are homogeneous polynomials all of the same degree. Then we say that
fos -+, fm have no base points on V if VNV (fo,..., fm) = 0.

Exercise 2.7. Suppose that fo,..., fm, € Clzo,...,z,] are homogeneous of degree d and have no
base points on V. Prove that the map (ag,...,a,) — (fo(ag,...,a,), ..., fm(ao,...,a,)) induces
a well-defined function F : V. — P™,

An important fact is that in the situation of Exercise 2.7, the image F(V)) C P™ is a projective
subvariety. When V' = P this is proved in [3, Chapter 8], and the proof extends easily to cover
the general case.

Exercise 2.8. When V' C C" is an affine variety and F : V. — C™ is a polynomial map, the
image F(V) C C™ need not be a subvariety. For example, suppose that V = V(zy — 1) € C? and
F:V —» Cis F(z,y) = x. Prove that F(V) is not a subvariety of C. The fact that F(V) is a
subvariety in the projective case is one reason why projective varieties are so useful in algebraic
geometry.

Affine Open Subsets. We can regard P" as a union of affine spaces as follows. For 0 < i < n,
consider the Zariski open set U; = P" — V(z;).

Exercise 2.9. As above, U; = P" — V(z;) = {(ao,...,a,) € P" | a; # 0}.
a. Show that U; ~ C" via (ag,...,an) — (ao/ai,...,ai—1/a;, aiv1/ai,. .., an/a;).
b. Show that V(z;) ~P" ! via (ag,...,an) = (0.3 Gi—1,Gig1s- .-, 0p)-
¢. Show that P" =Uy,U---UU,,.

This exercise shows that we can regard P™ as C" together with a copy of P"™! “at infinity”.
Also, the open cover of Exercise 2.9 shows that projective varieties are unions of affine varieties.

Exercise 2.10. Let V = V(fi,..., f;) C P" be a projective variety. Prove that under the map U; ~
C" from Exercise 2.9, V N U; corresponds to an affine variety defined by the vanishing of f;, where
fi(®@os ey i1, Tig1y - T0) = fi(@0y -y Tim1, L Tig1, ..o, Tn). We call f; the dehomogenization
of f; with respect to ;.

Another way to think about U; ~ C" is to use zo/Zj,...,Ti—1/Ti, Tiz1/Tiy. .., Tn/T; as
variables on C". Then the dehomogenization map of Exercise 2.10 is just f ~— f/z¢, where
f € Clzg,...,x,] is homogeneous of degree d. This approach preserves rational functions.

Exercise 2.11. Show that the map f/g — (f/z%)/(g/x¢) induces an isomorphism of fields

C(Pn) >~ (C(x‘o/x‘i, ce ,xi_l/xi,xiﬂ/xi, ce 7$n/$i)a
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where C(P") is the field of rational functions defined in Exercise 2.6.

Weighted Projective Space. We next discuss a generalization of P". Given positive integers
qo, - - - » qn satisfying ged(qo, ..., q,) = 1, we get the weighted projective space

P(qo, - - - qn) = (C"*1 —{0})/ ~,

where ~ is the equivalence relation on C"*' — {0} given by

(agy---san) ~ (boy-..,b,) < thereis A € C* with (ag,...,a,) = (Abg,...,A\1"b,).

Obviously P(1,...,1) = P". We will eventually show that P(qo,...,q,) is a toric variety. The
following exercise shows that P(qq,...,q,) contains a copy of (C*)™.

Exercise 2.12. As above, let qq,...,q, be positive integers with gcd(qo,...,q,) = 1.
a. Prove that (C*)"*1/H C P(qo,...,qy), where H = {(A%, ..., A%) | A € C*}.
b. Prove that (C*)"*!/H ~ (C*)". Hint: Make (qo,...,¢,) the first column of a matrix M €
GL(n + 1,Z) and use M to define an automorphism of (C*)"+1.

We call qq,...,q, the weights of the weighted projective space. In terms of the polynomial
ring C[xy, ..., z,], this means that z; has degree ¢;, and f € C[xzy, ..., z,] is weighted homogeneous
of (weighted) degree d if

(2.3) FOPzo, . Az) = N f(zg,...,T).

It is then easy to see that we can define weighted projective subvarieties in P(qo,...,q,) using
weighted homogeneous polynomials.

There are several ways to think about weighted projective spaces. The following two exercises
give two ways to represent P(1,1,2).

Exercise 2.13. Consider P(1, 1,2) with variables xy, z1, x> of degrees 1, 1,2 repsectively.
a. Show that z2, woz1, 22, 5 are (weighted) homogeneous of degree 2.
b. Show that (ag,a1,a2) — (a2, apa1,a?,as) is a well-defined map F : P(1,1,2) — P°.
c. Show that the map F' of part b is injective and that its image is the surface defined by the
equation yoy2 — y? = 0 (where yo,y1, y2,y3 are the coordinates of ]P’?’).

Exercise 2.14. Show that (ag, bo,co) — (ag, by, c2) gives a well-defined map P? — P(1,1,2). Also
show that this map is surjective and is two-to-one except above (0,0,1) € P(1,1,2).

We can also cover a weighted projective space by affine open subsets, though in this case, the
open sets will be affine varieties instead of affine space C". Rather than work this out in general,
we will restrict to the case of P(1,1,2). Here, we have the Zariski open sets U; = {(ap,a1,a2) €
P(1,1,2) | a; # 0}.

Exercise 2.15. Let Uy, Uy, Uz be the subsets of P(1, 1,2) defined above.
a. Show that Uy ~ C? via (a,b,c) — (b/a,c/a?) and U; ~ C? via (a,b,c) — (a/b,c/b?).
b. Let V = V(zz — 4?) C C*. Show that Uy ~ V via (a,b,c) — (a®/c,ab/c,b*/c).

One shows that P(1, 1,2) is the abstract variety obtained by “gluing” two copies of C? together
with the affine variety U from part ¢ of Exercise 2.15. But we must first understand what “gluing”
means.
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t3. Abstract Varieties

The Definition of Manifold. To better understand the definition of abstract variety, we begin
by recalling the definition of a C'* n-manifold. Such a manifold consists of a second countable
Hausdorff topological space M together with an open cover U, and homeomorphisms f, : U, — V,,
where V, C R" is open, such that for every «, 3, the composition

foofal: faUaNUg) = f3(Us NUp)

is a diffeomorphism.

It turns out that there is a simpler, though more sophisticated, way of giving this definition.
We begin with an open set V' C R". The sheaf of C*° functions on V, denoted Of°, is defined by
assigning to each open set U C V' the R-algebra

(3.1) OF(U)={f:U—=R|fisaC™ function}.

More generally, given a topological space X, we say that F is sheaf of R-algebras on X if for
every open set U C X, there is an R-algebra F(U) such that:
e If V C U are open, then there is an R-algebra homomorphism r{ : F(U) — F(V).*
e 7 is the identity and if W C V C U are open, then r)j, ory = rl, . *

o If U =], Us, where U, is open, then we have an exact sequence

0= FU) - H}"(Ua) = Hf(Ua NUg),
o a,B

where the second arrow is the map F(U) — F(U,) and the double arrows are the maps

F(Uy) = F(Uy NUB) and F(Ug) = F(Uy NUR).
Elements of F(U) are called sections of F over U, and when V C U, r¥ : F(U) — F(V) the
restriction map. In the third bullet, exactness at F(U) means that sections of F(U) are determined
locally, i.e., two sections are equal if and only if their restrictions to the U, are equal. Exactness
at [, F(Uy) means that compatible sections patch, i.e., sections over the U, which agree on their
intersections come from a section over U.

Given a sheaf F and U C X open, the sections of F over U can be denoted

F(U)=T(U,F)=H"U,F).

We will use the first of these in this section but will switch to the second for §9. When thinking in
terms of sheaf cohomology, one usually uses the third.

When F is a sheaf of R-algebras on X, we call the pair (X,F) a ringed space over R. For
example, when V' C R" is open, (3.1) gives a ringed space over R denoted (V, Og°).

Exercise 3.1. Complete the following definitions:
a. The restriction .7-"U of a sheaf F on X to an open set U C X is defined by ...
b. Ringed spaces (X, F), (Y,G) over R are isomorphic if there are a homeomorphism ¢ : X — Y
and, for U C Y open, an R-algebra isomorphism dﬂg :G(U) = F(¢p~1(U)), such that ...

We can now reformulate the definition of C'*° n-manifold.

* These two bullets say that F : Open sets of X — R-Algebras is a contravariant functor.
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Exercise 3.2. Let n be a positive integer and let (M, O)s) be a ringed space over R. Assume that
every point in M has a neighborhood U such that (U, OM‘U) is isomorphic to (V,Of°) for some
open subset V' C R". Prove that M has the structure of a C'* n-manifold.

Exercise 3.3. Conversely, let M be a € n-manifold as defined at the beginning of the section.
a. Given U C M open, define what it means for f : U — R to be C'*°.

b. Use the definition given in part a to define the sheaf Op; of C*° functions on M and show that
(M, Oyy) is a ringed space over R which satisfies the condition of Exercise 2.2.

For a C*° n-manifold M, the sheaf Oy, of Exercise 3.3 is called the structure sheaf of M.

Exercise 3.4. Give sheaf-theoretic definitions of a C* n-manifold and a complex n-manifold.

The Structure Sheaf of an Affine Variety. We first show that some of the constructions for
C"™ given in §1 generalize to an arbitrary affine variety V' = Spec(R).

Exercise 3.5. Let V = Spec(R) be an affine variety.
a. Given an ideal I C R, define V(I) C V. Then prove that V(I) is a subvariety of V' and that
all subvarieties of V' arise in this way.
b. Given a subvariety W C V, define I(W) C R and prove that I(W) is a radical ideal of R.
c. Prove the Nullstellensatz, i.e., that I(V(I)) = v/I for any ideal I C R.
d. Prove the Hilbert Basis Theorem, i.e., that any ideal I C R can be written in the form
I={f1,...,fs), where f1,..., fs € R.

In §1, we defined the Zariski open Vy C V for any f € R. Furthermore, when V' is irreducible,
we showed that V; = Spec(Ry¢), where

Ry ={g/f" €C(V)|g€R, m=>0}
is the localization of R at f, as defined in Exercise 1.9 of §1.
Exercise 3.6. Show that the sets V; form a basis of the Zariski topology of V.

The structure sheaf of an irreducible affine variety V' = Spec(R) is the sheaf of C-algebras in
the Zariski topology defined as follows. Given a Zariski open U C V, a function ¢ : U — C is
regular if for every p € V, there is f, € R such that p € Vy, C U and ¢‘Vf € Ry,. Then

P

Oy (U) ={¢:U — C| ¢ is a regular function}.

We will not show that Oy is a sheaf of C-algebras—we refer the reader to [4] or [5] for the details
of the proof. These references also show how to define Oy when V is not irreducible.

Exercise 3.7. Let V = C? and set U = C? — {(0,0)}. Show that Oy (U) = C[z, y].

The structure sheaf Oy has two important properties.



12 DaviD A. Cox

Theorem 3.1. Let V = Spec(R) be an irreducible affine variety.
a.(OV(VU = R.
b. If f € R, then OV‘Vf = va.

Proof. For part a, it suffices to show Oy (V) C R. If ¢ : V — C is a morphism, then for each
p € V, there are f,,g, € R such that ¢ = g,/f,"" and f,(p) # 0. Let I = (f,"" | p € V) C R.
It follows easily that V(I) = 0, so that by the Nullstellensatz, vI = I(V(I)) = I(§) = R. Thus
1 € R, which implies that 1 =) s h,f, " where h, € R and S C V is finite. Then

$=> hpfr$=> hyg, €R.
pES pES

For part b, let U C V be Zariski open. If ¢ : U — C is a morphism, then for every p € U,
there is p € Vy, C U such that ¢ € Ry,. Now suppose in addition that U C Vy. If we regard f, as
an element of Ry, then one easily sees that

¢ € Ry, C Ry, = (Ryf)y,-

Furthermore, Vy, N Vy = (Vy)y, shows that p € (Vy)y, C U C V. By definition, this implies that
¢ € Oy, (U), and part b now follows easily. O

Combining parts a and b of Theorem 3.1, we conclude that
OV(Vf) = OV‘vf (Vf) = va (Vf) = Rf

when V' = Spec(R) and f € R.

The Definition of Abstract Variety. We now give the main definition of this section.

Definition 3.2. An abstract variety (X,Ox) is a ringed space over C where each p € X has
a neighborhood U such that the restriction (U, O X‘U) is isomorphic (as a ringed space over C) to
(V, Oy ) for some affine variety V.

Given an abstract variety (X,Ox), an open set U C X is an affine open if (U, OX‘U) is
isomorphic (over C) to the ringed space of an affine variety. The topology on X is called the
Zariski topology since it restricts to the Zariski topology in each affine open subset.

Exercise 3.8. Let (X,Ox) be an abstract variety and let U C X be Zariski open. Show that
every section ¢ € Ox (U) gives a function ¢ : U — C. We say that ¢ a regular function on U.

Exercise 3.9. Let (X, Ox) be an abstract variety and let Y C X be Zariski closed. If U; C Y is
open, define Oy (U;) to be the set of all functions ¢ : U; — C such that for every p € Uy, there is
U C X open and a regular function ¢ : U — C with p e UNY C U; and d)‘Um,
a. Show that U; — Oy (Uy) is a sheaf of C-algebras on Y.
b. When (X, Ox) is an affine variety and Y C X is a subvariety, prove that the sheaf defined in
part a is precisely the sheaf of regular functions on Y
c. When (X, Ox) is an abstract variety and Y C X is Zariski closed, prove that the sheaf of part
a makes (Y, Oy ) into an abstract variety.

- J)‘UOY'

Given an abstract variety (X,Ox), we say that Y C X is a subvariety if it is Zariski closed.
The above exercise shows that Y inherits the structure of an abstract variety in a natural way. We
define (X, Ox) to be irreducible if X is not the union of two proper subvarieties.
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Exercise 3.10. Prove that an abstract variety is irreducible if and only if it is connected and every
affine open subset is irreducible.

Let us show that P" can be regarded as an abstract variety. In order to define the structure
sheaf Opn, we will use the field of rational functions C(P") defined in Exercise 2.6 of §2. If U C P"
is Zariski open, then a function ¢ : U — C is regular if for each p € U, there is f/g € C(P") such

that g(p) # 0 and QS‘U\UOV(g) = (f/g)‘U\UmV(g). Then
Opn(U) ={¢: U — C| ¢ is a regular function}

defines a sheaf Op» on P". We also have the affine open sets U; = {(ao, ..., a,) € P" | a; # 0}. In
Exercise 2.11, we noted that if we regard zo/x;,...,z;—1/%;, Ti—1/%;, ..., Ty /x; as coordinates on
C", then the map U; ~ C" induces an isomorphism

C(P") ~ C(zo/miy- .. i1 /Tiy Tim1 /T4,y - ., T [ T5).

Using this isomorphism, it is easy to see that (U;, Op» is isomorphic to (C", O¢n). This proves

)
that P" is an abstract variety. By Exercise 3.10, we see that P" is irreducible.

As is customary, we often write an abstract variety (X,Ox) as simply X, and we will also
drop the “abstract”. Thus, “the variety X” is short for “the abstract variety (X, Ox)”.

Finally, a variety X also has a classical topology, which is the coarsest topology on X that
agrees with the classical topology on every affine open subset of X. The structure sheaf Ox is not
a sheaf in the classical topology. However, one can define the closely related sheaf O% of analytic
functions on X, which is a sheaf in the classical topology. We call (X, O%") the complex analytic

space associated to the variety X. See [5, Appendix B] and [9] for more details.

The Function Field of an Irreducible Variety. If X is irreducible, then a rational function
on X is a regular function ¢ : U — C, where U is a nonempty Zariski open. Two rational functions
are equivalent if they agree on some nonempty Zariski open, and the set of equivalence classes is
denoted C(X). One can prove that C(X) is a field, called the function field of X.

Exercise 3.11. Let U be an affine open of an irreducible variety X. Prove that C(U) ~ C(X).

We say that ¢ € C(X) is defined at p € X there is a regular function ¢’ : U — C such that
p € U and ¢ is equivalent to ¢'. For ¢ € C(X), the set {p € X | ¢ is defined at p} is the largest
Zariski open on which ¢ is defined.

The Local Ring of a Point. Given an irreducible variety X and a point p € X, we define the
local ring of X at p to be

Ox,p ={¢ € C(X) | ¢ is defined at p}.
The key feature of Ox ) is described in the following exercise.

Exercise 3.12. Let Ox , defined as above.
a. Show that mx , = {¢ € Ox | ¢(p) = 0} is a maximal ideal of Ox ,,.
b. Given ¢ € Ox,p, show that ¢(p) # 0 implies that ¢~ € Ox .
c. Use part b to show that mx , is the unique maximal ideal of Ox .
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In general, a commutative ring R with unit is called a local ring if it has a unique maximal
ideal m. Thus Ox ), is a local ring by Exercise 3.12.
For an arbitrary variety X (not necessarily irreducible), one can define the local ring Ox ), to
be the direct limit
OX,P = 1_121 OX(U)a
p€eEU

where the limit is over all neighborhoods U of p. This is described in [4] and [5].

Morphisms. A morphism or reqular map consists of a continuous map ¢ : X — Y and, for each
Zariski open U C Y, a C-algebra homomorphism ¢# : Oy (U) — Ox (¢~1(U)), such that:
e ¢# is compatible with restriction maps.
e For each p € X, the map of local rings d)f : Oypp) — Ox,p induced by ¢* is a local
homomorphism, meaning that my. 4,y = (¢#) ™ (mx ).
A morphism (¢, ¢%) : (X,0x) — (Y, Oy) is usually written ¢ : X — Y.
An important results is that if V' = Spec(R) and W = Spec(S) are irreducible affine varieties,
then giving a morphism ¢ : V' — W is equivalent to giving a C-algebra homomorphism ¢* : § — R.
This is proved in [4] and [5].

Gluing Together Affine Varieties. We first observe that a variety X can be constructed by
“gluing together” affine varieties along Zariski open subsets. Namely, Definition 3.2 implies that
X has an affine open cover U, so that f, : U, ~ V,, where V, is an affine variety. Then, for any
a, B, the set

Vag = fa(Ua N Ug) Cc V,

is Zariski open in V,, and the map

gaﬁ:fﬁofa_l:vaﬁ_)‘/ﬁa

is an isomorphism of Zariski open subsets. Furthermore, these maps are compatible as follows:
® gaa = ly, for every a.

[ ] o =
957‘Vgar1v67 9ob v, s0va, = Jovlv,5nva, for every a, 5, 7.

We call these the compatibility conditions.
Conversely, suppose we have a collection

({Vatas {Vasta,p:{9apta.n);

where each V,, is an affine variety, V.3 C V, is Zariski open, and the g.g : Vog =~ V3. are
isomorphisms which satisfy the above compatibility conditions. Then we get the topological space

X=]]Va/~

where a € V,, is equivalent to b € V3 if a € V.3 and b = g,p(a). Furthermore, the structure sheaves
Oy, patch to give a sheaf Ox, and from here it is straightforward to prove that (X, Ox) is a variety
with an affine open cover U, such that U, ~ V, for every «. In this situation, we say that X is
obtained from the V, by gluing them together along the V5 via the g.z.

Exercise 3.13. Let V[) = Vl = (C, V()l = Vl() =C- {0} and 901($) = g]_()(.’E) = lE_l. Prove that
this data determines the variety P*.
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Cartesian Products. If X and Y are varieties, then their cartesian product X x Y exists, though
the definition is subtle. The difficulty is that the usual product topology on X x Y gives the wrong
topology. Here is an example.

Exercise 3.14. Show that the product topology on C x C, where we use the Zariski topology on
each factor, is not the Zariski topology on CZ.

To get the correct definition of cartesian product, we begin with affine varieties. Suppose that
V =V(fi,...,fs) C C", with variables z1,...,z, and W = V(g1,...,9;) C C™, with variables
Y1, ---,Ym- Also let R and S be the coordinate rings of V' and W respectively.

Exercise 3.15. Let V = Spec(R) and W = Spec(S) be as above.
a. Show that V x W C C" x C™ = C"*™ is the affine variety V(f1,..., fs,91,...,0:), where
filze,...,20),9i (W1, ym) €EClz1, ..., Zn, Y1, -, Y]
b. Show that the coordinate ring of V- x W is R ®c S.
Thus the cartesian product of V' = Spec(R) and W = Spec(S) is V- x W = Spec(R ®c S).

In the general case, we think of X as obtained by gluing together Zariski open subsets of U,
and similarly Y comes from gluing together Zariski open subsets of Ué. Then X X Y is constructed
by gluing together the affine varieties U, x Uy along suitable Zariski open subsets. We omit the
details of the construction, which can be found in [4] and [5].

As an example, P" x P can be constructed by this method. If zg, ..., z, are coordinates on
P" and vy, ..., ym are coordinates on P, then one can show that V' C P" x P is Zariski closed
if and only if V.= V(f1,...,fs), where f; € Clxo,...,Zn;Y0,---,Ym] 18 bihomogeneous, meaning
that it is separately homogeneous in the x; and in the y;.

Finally, we should mention that if X and Y are varieties, then the classical topology on X xY
is the product of the classical topologies on X and Y respectively.

¢4. Separated, Quasi-Compact, Complete, and Normal Varieties

Separatedness. Given any variety X, the diagonal map of X is the map A : X — X x X defined
by A(p) = (p,p) for p € X. Then X is separated if the image of the diagonal map A(X) is Zariski
closed in X x X. Here are some examples of separated and non-separated varieties.

Exercise 4.1. Consider the variety X constructed by identifying two copies of C along C — {0} (in
the language of §3, this corresponds to Vy = Vi = C, Vi1 = Vip = C—{0} and go1(z) = g10(z) = ).
Show that X is not separated.

Exercise 4.2. Prove that C" is separated by considering V(z1 — y1,...,2, — yn) C C" x C".
Exercise 4.3. Prove that a subvariety of a separated variety is separated.

Combining Exercises 4.2 and 4.3, we see that affine varieties are always separated. We will
omit the proof that P" is separated. By Exercise 4.3, it follows that every projective variety is
separated.

In [9], Serre characterized separatedness in terms of the classical topology as follows.
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Theorem 4.1. A variety X is separated if and only if it is Hausdorff in the classical topology.

For example, this theorem makes it easy to see that the variety X of Exercise 4.1 is not
Hausdorff (the two copies of the origin in X do not have disjoint neighborhoods). This also gives
a quick proof of Exercise 4.2 since C" is Hausdorff in the classical topology.

Here are some properties of separated varieties.

Proposition 4.2. Let X be a separated variety.
a. If U and V are affine open subsets of X, then U NV is also an affine open of X.
b. If f,g:Y — X is a morphism of varieties, then {y € Y | f(y) = g(y)} is a subvariety of Y.

Proof. For part a, we note that A : X — X x X identifies U NV with A(X) N (U x V).
We know that A(X) is Zariski closed in X x X by the definition of separated. It follows that
A(X) N (U x V) is Zariski closed in U x V. But U x V is affine by Exercise 3.15, which implies
that A(X)N (U x V) ~UNYV is also affine.

To prove part b, consider ¢ : Y — X x X defined by ¢(y) = (f(v),g(y)). Since

{yeY | fly) =g(y)} =9~ (AX)),

we see that {y € Y | f(y) = g(y)} is Zariski closed in Y since ¢ is continuous in the Zariski topology
and (by separatedness) A(X) is Zariski closed in X x X. O

When studying differentiable manifolds, one always assumes that the underlying topological
space is Hausdorff. Similarly, in algebraic geometry, the varieties of interest are almost always
separated. For this reason, we henceforth reserve the term wariety for a separated variety. A
non-separated variety will be called a pre-variety.

Quasi-Compactness. We say that a variety X is quasi-compact if X is the union of finitely many
affine open subsets. Any affine variety is quasi-compact. An more interesting example is P", which
is quasi-compact since it the union of the affine open subsets U; = P" — V(z;).

Here are the main properties of quasi-compact varieties.

Proposition 4.3. Let X be a quasi-compact variety. Then:
a. Every subvariety of X is quasi-compact.
b. Every Zariski open subset of X is quasi-compact.
c. Every Zariski open cover of X has a finite subcover.

Proof. Suppose that X = U; U---U U, where U; is an affine open subset of X. Then part a is
obvious since Y = (Y NU;)U---U (Y NU,) where Y NU; is an affine open of Y.

For part b, U = (UNU;)U---U(UNU,) shows that we can assume that X = Spec(R) is affine.
Then X — U = V(I) for some ideal I C R. The Hilbert basis theorem implies I = (f1,..., fs), and
it follows that U = JI_; X¥,.

Finally, we leave part ¢ as Exercise 4.4 below. O

Exercise 4.4. Prove that every Zariski open cover of a quasi-compact variety has a finite subcover.
This exercise explains there the term “quasi-compact” comes from. As with separatedness,

the varieties of interest to algebraic geometers are almost always quasi-compact. Hence, from now
on, whenever we say variety, we will mean a separated quasi-compact abstract variety.

Completeness and Properness. A variety X is complete if the following conditions hold:
e X is separated.
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e X is quasi-compact.
e For every other variety Y, the projection map X XY — Y is closed, meaning that the projection
of a Zariski closed set in X x Y is Zariski closed in Y.

Exercise 4.5. Prove that a subvariety of a complete variety is complete.
Exercise 4.6. Prove that the cartesian product of two complete varieties is complete.

Exercise 4.7. Prove that a variety X is complete if and only if for all m > 1, the projection map
X xC™ — C™ is closed.

The most basic example of a complete variety is P".
Theorem 4.4. P" is complete.

For a proof, note that Theorem 6 of [3, Chapter 8, §5] implies that the projection map P" x
C™ — C™ is closed. By Exercise 4.7, it follows that P™ is complete, and then any projective variety
is complete by Exercise 4.5.

The completeness of P is closely related to elimination theory. To see why, suppose we have
polynomials

fla"'?fs € C[x()a"'axnayl?"'aym]

which are homogeneous in zy, ..., x,. We can think of the f; as homogeneneous polynomials in the
x; whose coefficients depend on the “parameters” y;. Question: For which values of the parameters
y; do the equations

(4.1) fi=-=f=0

have a nontrivial solution in the x;?

To answer this question, observe that (4.1) defines a subvariety W C P" x C™, and the values
of the y; for which (4.1) has a nontrivial solution is the image of W under the projection map
P" x C™ — C™. Since P" is complete, this image is a variety in C". In other words, there are
polynomials gi,...,9; € Cly,...,ym] such that (4.1) has a nontrivial solution for the parameter
values y; = b; if and only if

(42) gl(bla---ubm):"':gl(bla---abm):0-

Chapter 8 of [3] gives an algorithm for finding the polynomials g;. We say that (4.2) is obtained
from (4.1) by eliminating the variables xg,...,z,. This is projective elimination theory.
Serre’s paper [9] characterizes completeness in terms of the classical topology as follows.

Theorem 4.5. A variety X is complete if and only if it is compact in the classical topology.

This theorem and the Hopf fibration S?"*1 — P" give another proof that P" is complete (see
Exercise 2.2). In algebraic geometry, completeness is a very useful property. Here is a result which
indicates some reasons why.

Theorem 4.6. Let X be a complete variety.
a. If ¢ : X — 'Y is a morphism, then its image ¢(X) is a subvariety of Y.
b. If ¢ : C* — X is a morphism, then ¢ extends uniquely to a morphism gg :C— X.
c. X is affine if and only if X is a finite set of points.
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d. If X is connected, then every morphism ¢ : X — C is constant.

Part b of this theorem says that if X is complete and ¢ : C* — X is a morphsim, then
lim;_, ¢(t) exists as a unique element of X whenever X is complete (in fact, lim; o, ¢(t) also
exists, so that ¢ extends to a map P' — X). Part ¢ says that affine varieties are very far from
being complete since these concepts coincide only for finite sets of points.

Finally, completeness closely related to the idea of a proper morphism ¢ : X — Y. We will not
give the definition here (we would need to define fibered products and morphisms of finite type).
The reader should consult [4] and [5] for the full definition. Turning to Serre’s classic paper [9] yet
again, we can characterize properness in terms of the classical topology as follows.

Theorem 4.7. A morphism ¢ : X — Y is proper if and only if it is proper in the classical topology,
meaning that ¢~!(C) C X is compact whenever C C'Y is compact.

Exercise 4.8. Prove that X is complete if and only if X — {pt} is proper, where {pt} is the
variety consisting of a single point.

Normality. A variety X is normal if it is irreducible and the local ring Ox ), is integrally closed
for every p € X. In order to relate this to the definition of normal affine variety given in §1, we
will need the following exercise.

Exercise 4.9. Let R be an integral domain with field of fractions K. A subset S C R is a
multiplicative subset if 1 € S, 0 ¢ S, and S is closed under multiplication. Then the localization of
Rat Sis Rs ={a/be K |a€c R,be S}.
a. Prove that Rg is the smallest subring of K containing R such that every s € S is invertible in
Rgs.
b. Prove that if R is integrally closed, then Rg is integrally closed.

We now show that for affine varieties, our two notions of normal coincide.

Proposition 4.8. Let V = Spec(R) be an irreducible affine variety. The R is integrally closed if
and only if the local ring Oy, is integrally closed for allp € V.

Proof. We know from §1 that p € V' corresponds to a maximal ideal M C R. Then R — M is a
multiplicative subset since maximal implies prime, and one easily shows that

Ov’p = RR—M-

If R is integrally closed, then Exercise 4.9 implies that Oy, is also integrally closed. Conversely, if
all of the Oy, are integrally closed, then one easily shows that

(1 0v,

peV

is also integrally closed. However, this intersection is precisely Oy (V'), which equals R by part a
of Theorem 3.1 of §3. It follows that R is integrally closed. O

Proposition 4.8 has a following immediate corollary.
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Corollary 4.9. An irreducible variety X is normal if and only if it is a union of affine varieties

U, = Spec(R,,) where R,, is integrally closed.

t5. Smooth and Quasismooth Varieties

The Dimension of a Variety. We were using a very naive notion of dimension when we asserted
that C" and (C*)™ have dimension n. For an arbitrary variety X, there are several ways to define
dim X rigorously. In the irreducible case, we do this as follows.

Definition 5.1. The dimension of an irreducible variety X is:
e The transcendence degree of C(X) (this is the maximal number of algebraically independent
elements of C(X)).
e The maximum number n such that one can find distinct irreducible subvarieties

@#Vocvlc---CVnZX.

It is not at all obvious that these definitions coincide, but they do—see [5]. In the affine or
projective case, one can also define dimension using the degree of an appropriate Hilbert polynomial.
This approach is used in [3].

Some important results concerning the dimension of a variety are:

e C", (C*)™ and P" have dimension n.

e The dimension of a variety is the maximum of the dimensions of its irreducible components.

o If W is a subvariety of V, then dim W < dim V. Furthermore, if V' is irreducible and W is a
proper subvariety, then dimW < dim V.

e dimX XY =dimX +dimY.

e If V is an irreducible affine variety and f € C[V] is not invertible, then every irreducible

component of V(f) C V has codimension 1.

e Let V C P" be irreducible of positive dimension and pick f € Clz,...,z,]. If f doesn’t vanish

on V, then then every irreducible component of V N'V(f) C V has codimension 1.

The Dimension of a Variety at a Point. The dimension of a variety X at a point p € X,
denoted dim, X, is defined as either:

e The maximum of the dimensions of the irreducible components of X which contain p.

e The Krull dimension of the local ring Ox , (this is one less than the maximum length of a

chain of prime ideals in Ox ).

Some of the properties of the dimension at a point include:

e dim X = max,¢cx dim, X.

o IfpeY C X, then dim, ¥ < dim, X.

e [fp€ X and g € Y, then dim, ;) X x Y = dim, X + dim, Y.

The Zariski Tangent Space. In multivariable calculus, one defines the tangent space at a point
of a surface in R3, and this generalizes to the tangent space at a point of a differentiable manifold.
In algebraic geometry, the Zariski tangent space plays a similar role.

Definition 5.2. Let p be a point of a variety X and let mx , be the maximal ideal of the local
ring Ox ,. Then the Zariski tangent space is defined to be

Tp(X) = Homc(mx,p/m_%(’p, (C)
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Exercise 5.2. Use Ox,/mx, ~ C to prove that mX,p/m?X’p has a natural structure as a vector
space over C. This shows that Definition 5.2 makes sense.

Exercise 5.3. Let V C C" be an affine variety and p = (ay,...,a,) € V.
a. Show that mcn, = (z1 —a1,...,2, — an) C Ocny,.
b. Show that mcn,/mZ. , has dimension n, and conclude that dime 7,(C") = 7.
c. Use the surjection Ogn), — Oy, to construct natural inclusion T,(V) C T,(C").
d. Conclude that dime T, (V) < n.

In the affine case, page 32 of [5] shows how to compute the Zariski tangent spaces as follows.

Lemma 5.3. Let V C C" be a affine variety and let p € V. Also assume that I(V) = (f1,..., fs)-
For each 1, let

_ 9fi ofi
() = G @)+ + 2 ) o
The T,(V') is isomorphic to the subspace of C" defined by d,(f1) = --- = d,(fs) = 0.

Exercise 5.4. Let V = V(2® — y?) C C*. For each p € V, show that dimc T,,(V)) = 1 unless p is
the origin, in which case the dimension is 2.

Exercise 5.5. If p € X and ¢ € Y, prove that T, , (X xY) ~ T,(X) @ Ty (Y). Hint: Reduce to
the affine case and use Lemma 2.3. See also Exercise 3.15 of §3.

In general, we always have dim¢ T}, (X) > dim, X. See Exercise 5.10 of [5, Chapter I].

Smooth Varieties. As with dimension, there are many ways to define smoothness.

Definition 5.4. A variety X is smooth or nonsingular at p € X if dimc T}, (X) = dim, (X). We
say that p is a singular point of X if it is not a smooth point.

Since T, (X) = Homc (mx ,/m% ,, C), we see that X is smooth at p when dim,(X) equals the
dimension of mx , /mﬁg,p as a vector space over Ox ,/mx ;. In terms of commutative algebra, this
means that p € X is smooth if and only if Ox , is a regular local ring.

By Exericse 5.3, every point of C" is smooth (such a variety is called smooth). For a point of
a subvariety of C", we can test for smoothness as follows.

Exercise 5.6. Let V C C" be an affine variety and let I(V) = (f1,..., fs). Also let p € V and set
d = dim,, V. Then prove that V is smooth at p if and only if the Jacobian matrix

ofi

)
0w 1<i<s,1<5<n

Jo(frsef) = (

has rank n — d. Hint: Use Lemma 5.3.
Exercise 5.7. Let V = V(zy — zw). Prove that the origin is the only singular point of V.

Exercise 5.8. Let p € X and g € Y. Prove that X x Y is smooth at (p,q) if and only if X and Y
are smooth at p and ¢ respectively. Hint: Use Exercise 5.5 and the properties of dim, X.

Exercise 5.9. Given a variety X, the set X, = {p € X | p is singular} is the singular locus of
X. Use Exercise 5.5 to prove that X, is a subvariety of X. (With more work, one can show that
Xsing 18 a proper subvariety of X. See Theorem 5.3 of [5].)
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Local Analytic Equivalence. When we want to say that two varieties are locally the same, we
have to be careful to specify what we mean by “local”.

Suppose that we have p € X and ¢ € Y, where X and Y are varieties. Then, in the Zariski
topology, X and Y being “locally equivalent” at p and g respectively means that there are Zariski
opensets p € U C X and g € V C Y such that U ~ V as varieties. Since Zariski open subsets are
huge, this notion of “local equivalence” is not very useful.

Exercise 5.10. Show that p € X and g € Y are “locally equivalent” in the above sense if and only
if the local rings Ox , and Oy, are isomorphic as C-algebras.

In §3, we discussed the sheat OF' of analytic functions on X, which is a sheaf in the classical
topology. This allows one to define an analytic (or holomorphic) map between classical open sets
in varieties. Then X and Y are analytically equivalent at p and ¢ if there are classical open sets
peU C X and ¢ € V C Y such that U >~ V as analytic varieties. Here are two nice facts about
local analytic equivalence:

e As in Exercise 5.7, X and Y are analytically equivalent at p and ¢ if and only if there is a

C-algebra isomorphism between the local rings 0%, and O, .

e p € X is smooth if and only if it is analytically equivalent to 0 € C".

Finite Quotients of Affine Space. Let G be a finite subgroup of GL(n,C). Then G acts on C",
and the quotient C" /G is the set of G-orbits. By Chapter 7 of [3], we can turn this set into an
affine variety as follows.

Proposition 5.5. Given a finite subgroup G C GL(n,C), let C[zy,...,7,]9 C Clzy,...,z,] be
the subring of invariant polynomials. There is a natural bijection C" /G ~ Spec(C[z1,...,7,]9).

Understanding the structure of Clzy,...,2,]¢ is one of the goals of invariant theory. In some
cases, the quotient C" /G is still smooth.

Exercise 5.11. Let C,, € GL(n,C) be the matrix with €27/ 1,...,1 on the main diagonal
and 0’s elsewhere, and let G = {C’ | 0 < i < m — 1}. Use the map C* — C" given by
(a1,az,...,a,) = (a, as,...,ay,) to prove that C"/G ~ C". Also, what is C[zy,...,7,]?

Exercise 5.12. Let the symmetric group S,, be embedded in GL(n,C) as the set of permutation
matrices. Then S,, acts on C" by permuting coordinates. Prove that C"/S,, ~ C". Hint: Elemen-
tary symmetric polynomials.

A matrix in GL(n, C) is a complez reflection if it is conjugate to the matrix C,, of Exercise 5.7,
and G C GL(n, C) is a complez rotation group if it is generated by complex rotations. The Shephard-
Todd-Chevalley theorem says that C"/G ~ C" if and only if G is a complex reflection group. A
proof can be found in [10, Section 2.4].

Exercise 5.13. Show that the n x n permutation matrices form a complex reflection group.

Exercise 5.14. Let G C GL(n,C) be a finite subgroup and let H be subgroup of G generated by
the elements of G which are complex reflections. Prove that H is normal in G.

We next define a special type of finite matrix group.
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Definition 5.6. A finite subgroup G C GL(n,C) is small if it contains no complex reflections
other than the identity.

Small subgroups were introduced by Prill in order to obtain a one-to-one correspondence
between groups and quotients. More precisely, we have the following results, proved in [7]:

e If G C GL(n,C) is finite, then in a classical neighborhood of the origin, C" /G is analytically
equivalent to the quotient of C" by a small subgroup. (The rough idea is that if H is the
subgroup of Exericise 5.14, then C"/H ~ C" by the Shephard-Todd-Chevalley Theorem, and
in a classical neighborhood of the origin, the action of G/H on C" is analytically equivalent
to the linear action of a small subgroup.)

e If G; and G5 are small subgroups of GL(n,C) which give analytically equivalent singularities,
then G; and G are conjugate in GL(n, C).

Quasimooth Varieties. We now define a type of singularity which is close to being smooth.

Definition 5.7. A point p of a variety X is a finite quotient singularity if there is a small
subgroup G C GL(n,C) such that p € X is analytically equivalent to 0 € C"/G. Then X is
quasismooth or has finite quotient singularities or is Q-smooth if every point of p is a finite
quotient singularity.

Note that the definition of finite quotient singularity allows G to be the trivial subgroup of
GL(n,C). It follows that any smooth variety is quasismooth. Here is an example to show that the
converse is not true.

Exercise 5.15. Let V = V(zz —4?) C C°.
a. Show that the origin is the unique singular point of V.
b. Let G = {£I} C GL(2,C). If we think of C* as Spec(C[a,b]), then show that C[a,b]¢ =
Cla?, ab, b?].
c. Show that C[a?, ab,b?] ~ Clz,y,2]/{xz — y?), and conclude that C*/G ~ V.

For the surface V' C C? of this exercise, 0 € V is not smooth by part a and is a finite quotient
singularity by part c. Since all other points of V' are smooth, we see that V is quasismooth but not
smooth.

We can generalize Exercise 5.15 as follows.

Proposition 5.8. Let G C C" be a small subgroup. Then C" /G is quasismooth.

Proof. The definition of quasismooth guarantees that 0 € C"/G is a finite quotient singularity.
But what about the other points of C"/G? Given v € C", let G, = {9 € G | g- v = v} be its
isotropy subgroup. We will show that v € C" /G is analytically equivalent to 0 € C"/G,,.

First observe that w — w 4+ v is equivariant with respect to the action of G, as is w — w — v.
This gives an isomorphism of varieties C" /G, — C" /G, which takes 0 to v. Thus 0 € C"/G, is
analytically equivalent to 0 € C"/G,,.

Hence we need only show that v € C"/G, is analytically equivalent to v € C"/G. Let
{gi} be left coset representatives for G/G,. Then C"/G is obtained from C"/G, by identifying
w € C" /G, with g; -w for all i. Since the points g; - v are distinct in C" /G, we can find a classical
neighborhood U of v € C"/G, such that the neighborhoods g;-U are disjoint. The g; act on C" /G,
as isomorphisms of varieties, which implies that v € U C C"/G, is analytically equivalent to a
neighborhood of v € C"/G. This gives the desired analytic equivalence. O

Exercise 5.16. Prove that a cartesian product of quasismooth varieties is quasismooth.
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§6. The Local Ring of an Irreducible Hypersurface

Let X be an irreducible variety with function field C(X). A subvariety Y C X is a hypersurface
if every irreducible component of Y has codimension 1 in X.

The Local Ring. Let Y C X be an irreducible hypersurface. Then consider the set

Ox,y ={f € C(X) | f is defined on a nonempty Zariski open subset of Y'}.

To understand this, recall that f € C(X) means that there is a nonempty Zariski open Y C X and
f:U — Cis a morphism. Then f € Oxy when we can find such a U satisfying U N'Y # 0.

Exercise 6.1. Prove that Oxy is a local ring and that the maximal ideal consists of those
f € Ox,y which vanish on Y.

Exercise 6.2. Let Y = V(z) c C2.
a. Prove that

O(CZ,Y = {% | P(x,y),Q(x,y) € C[$,y], Q(Ouy) # 0}

b. Given f € C(z,y), prove that f = z™g, where m € Z and g € Oz y is a unit. Hint: Write
f = P/Q, where Q(0,y) # 0. Explain why P = 2*P’ and Q = z'Q’, where P(0,y) and Q(0,y)
are nonzero.

c. Prove that every nonzero ideal of Og2 y is of the form (z™) for some m > 0.

Given f € C(z,y), Exercise 6.2 tells us that f = 2™g for m € Z and g a unit in O¢: . We
call m the order of vanishing of f on Y = V(z) C C? and denote it by ordy (f).

Discrete Valuation Rings. The crucial observation is that Exercise 6.2 generalizes to any normal
variety. Let R be an integral domain with field of fractions K, and set K* = K — {0}. Then R is
a discrete valuation ring if there is a surjective function

ordgr : K* — Z

such that every for a,b € K*, we have:
e ordr(ab) = ordg(a) + ordg(b).
e ordg(a + b) > min(ordg(a), ordg (b)) provided a + b # 0.
e R={a € K*|ordg(a) >0} U{0}.
We say that ordg is a valuation on K and that R is its valuation ring.

Exercise 6.3. Let R be a discrete valuation ring.
a, Prove that R is a local ring with m = {a € R | ordg(a) > 0} as maximal ideal.
b. Let a € R satisfy ordg(a) = 1 (a exists because ordg is onto). Prove that m = (a).
c. Let a be as in part b. Prove that any nonzero ideal of R is of the form (a™) for some m > 0.

Exercise 6.4. Prove that a discrete valuation ring is an integrally closed one-dimensional Noethe-
rian local ring. (A ring R is Noetherian if every ideal of R is finitely generated, i.e., if the Hilbert
Basis Theorem holds for R.)

Here are two classic examples of discrete valuation rings.
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Exercise 6.5. Let p be prime. Prove that Z,) = {a/b | a,b € Z, ged(p,b) = 1} is a discrete
valuation ring. This gives the p-adic valuation, denoted ord,.

Exercise 6.6. Let C{{z}} the ring of complex power series with positive radius of convergence.
Prove that C{{z}} is a discrete valuation ring and that the valuation gives the order of vanishing
of a nonzero element of C{{z}}.

For us, the main result we need is as follows.

Theorem 6.1. Let Y be an irreducible hypersurface in a normal variety X. Then Oxy is a
discrete valuation ring.

Proof. The argument requires substantial amounts of commutative algebra. We will omit the
details and just sketch the ideas involved. One begins with the following observations:
e Ox y is integrally closed since the localization of a integrally closed domain is integrally closed.
e Oxy has dimension 1 as a ring since Y having codimension 1 in X.
e Ox y is Noetherian since the localization of a Noetherian ring is Noetherian.
Thus Ox y is a integrally closed one-dimensional Noetherian local ring. A classic result states that
any such ring is a discrete valuation ring (and conversely, as you showed in Exercise 6.4). The
commutative algebra used here can be found in [1], especially Chapter 9. O

In the situation of Theorem 6.1, the corresponding valuation is written
ordy : C(X)* — Z.

Given f € C(X)*, we say that f vanishes to order m along Y if m = ordy (f) > 0 and has a pole
of order m on'Y if m = —ordy (f) > 0.

§7. Weil Divisors on Normal Varieties

Weil Divisors. A Weil divisor on a normal variety X is a finite formal sum

D = i a'iDi
i=1

where the D; are distinct irreducible hypersurfaces of X and a; € Z. The set of all Weil divisors is
a group under addition and is denoted

WDiv(X).

We say that D = >""_, a;D; is effective if a; > 0 for all 4, and we write this as
D >0.

Note that any Weil divisor can be written uniquely as the difference of two effective Weil divisors.

The Divisor of a Rational Function. Given f € C(X), we can define ordy (f) for every irre-
ducible hypersurface Y C X. This gives a Weil divisor as follows.
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Proposition 7.1. Let X be normal and f € C(X) be nonzero. Then there are at most finitely
many hypersuraces Y C X such that ordy (f) # 0. Thus we can define the Weil divisor

div(f) = > oyordy (f) Y.

Proof. Let U C C be a Zariski open where f : U — C is a nonzero morphism. Then U’ =
U — f~1(0) is also Zariski open in X. If Y C X is an irreducible hypersurface with Y NU’ # (), then
ordy (f) = 0 since f is defined but nonvanishing on Y NU’. Thus ordy (f) # 0 implies Y C X —U".
Since X — U’ is a proper subvariety of X and Y has codimension 1, it follows that ¥ must be
an irreducible component of X — U’. Then we are done since X — U’ has at most finitely many
irreducible components. (|

We sometimes write div(f) = divo(f) — diveo(f), where

divo(f) = Y ordy(f)Y

ordy (f)>0

divee(f) = Y —ordy(f)Y.

ordy (f)<0

We call divg(f) (resp. diveo (f)) the divisor of zeros of f (resp. the divisor of poles of f). Note that
these are effective divisors.

Exercise 7.1. Explain why div(fg) = div(f) + div(g) and div(1/f) = —div(f) for f,g € C(X)*.

Exercise 7.2. Let f € C[t] be a polynomial of degree n, and write f = ¢(z —a1)™* --- (¢ — a,)™",
where a1,...,a, € C are distinct.

a. When X = C, show that div(f) = >_I_; m; {a;}.

b. When X = P' = C U {co}, show that div(f) = Y"i_, m; {a;} — n{occ}.

Finally, we need to know when the divisor of a rational function vanishes.

Proposition 7.2. Let X be a normal variety and let f € C(X)*. Then div(f) > 0 if and only if
f: X — C is a morphism, i.e., f € Ox(X).

Proof. If f : X — Cis a morphism, then f € Oy y for every Y, which in turn implies ordy (f) > 0.
Hence div(f) > 0. Going the other way, suppose that div(f) > 0. Then

(7.1) f€NyOxyy,

where the intersection is over all irreducible hypersurfaces of X. Hence f is defined on a nonempty
Zariski open subset of every irreducible hypersurface. It follows that f is defined outside of a
subvariety of codimension at least 2. Since X is normal, a standard result in commutative algebra
implies that f is defined everywhere (see Exercise 7.3 below). O

Exercise 7.3. Let X = Spec(R), where R is integrally closed. Let K be the fraction field of R
and suppose that f € K has div(f) = 0.
a. Show that (7.1) implies that f € (), Ry, where:
e The intersection is over all prime ideals p C R such that V(p) has codimension 1 in X
(these are called prime ideal of height 1, written ht(p) = 1).
e R, is the localization of R at the multiplicative subset R —p (in Exercise 4.9 of §4, this
was written Rr_p).



26 DaviD A. Cox

b. A theorem in commutative algebra states that R = ﬂht(p):l R, whenever R is Noetherian and
integrally closed. A proof can be found in [6, §12]. Explain how this completes the proof of
Proposition 7.2.

While the proof of Proposition 7.2 uses a lot of commutative algebra, there is also some nice
intuition coming from several complex variables. Suppose that U C C? is a classical neighborhood
of the origin and that f is holomorphic on U — {(0,0)}. Then Hartogs’ Lemma asserts that f
extends automatically to a holomorphic function on U. This applies more generally as follows: if
X is a normal analytic space and f is homomorphic on X — Y, where Y has codimension at least
2, then f extends to a holomorphic function on X.

For a connected complete variety X, we learned in Theorem 4.6 of §4 that the only morphisms
X — C are constant. This gives the following corollary of Proposition 7.2.

Corollary 7.3. Let X be a complete normal variety and let f € C(X)*. Then div(f) > 0 if and
only if f is constant.

Since div(1/f) = —div(f) by Exercise 7.1, we see that div(f) = 0 if and only if div(f) > 0 and
div(1/f) > 0. Hence we get another corollary of Proposition 7.2.

Corollary 7.4. Let X be a normal variety and let f € C(X)*. Then div(f) = 0 if and only if
f: X — C" is a morphism, i.e., f € Ox(X)* (the group of invertible elements of Ox (X)).

Linearly Equivalent Divisors and the Divisor Class Group. As above, let X be a normal
variety. We say that two Weil divisors Dy, Dy € WDiv(X) are linearly equivalent, written Dy ~ D,
if there is f € C(X)* such that div(f) = D; — D5. Furthermore, we say that D € WDiv(X) is a
principal divisor if D ~ 0, i.e., D = div(f) for some f € C(X).

Exercise 7.4. Let ~ be defined as above.
a. Use Exercise 2.1 to show that set of principal divisors is a subgroup of WDiv(X).
b. Show that ~ is an equivalence relation on Div(X).

The subgroup of principal divisors is denoted Divy(X) (§8 will explain this notation). Parts
a and b of Exercise 7.4 are linked, of course, since ~ is the equivalance relation coming from the
subgroup Divy(X). The quotient group

CI(X) = WDiv(X)/Divo(X)

is the divisor class group of X. It consists of equivalence classes of linearly equivalent divisors.
Given D € Div(X), its divisor class in CI(X) is denoted [D].
Here is an important exact sequence involving the class group.

Exercise 7.5. Let X be a normal variety. Use Corollary 7.4 to prove that there is an exact
sequence

1 - Ox(X)" - C(X)" - WDiv(X) — Cl(X) — 0,
where the map C(X)* — WDiv(X) is f + div(f) and WDiv(X) — CI(X) is D ~ [D].

One pretty result we will need is the following. A proof can be found in Proposition 6.2 of [5,
11.6].
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Theorem 7.5. For a normal affine variety X = Spec(R), the class group Cl(X) is trivial if and
only if R is a unique factorization domain.

The class group C1(X) is sometimes denoted A, _1(X), where n = dim X. More generally, one
can define Chow groups for Ay (X) for any irreducible variety X.

In another direction, let Og be the ring of algebraic integers in a number field K. Then the
scheme X = Spec(R) is normal, and CI(X) can defined as above. One can show that in this case,
Cl(X) is the ideal class group of K as defined in algebraic number theory.

¢8. Cartier Divisors on Normal Varieties

We will give a slightly non-standard treatment of Cartier divisors which works nicely on normal
varieties.

Our Definition. Let D = Ele a;D; be a Weil divisor on a normal variety X. If U C X is a
nonempty Zariski open subset, then the restriction of D to U is the is Weil divisor

Dl,= Y a&UND,.
UNnD;#0

We now define a special class of Weil divisors.

Definition 8.1. Let D be a Weil divisor on a normal variety X.
a. D is locally principal if there is an open cover {U;};cr of X such that D‘Ui is principal for
every i € I.
b. D is Cartier if it is locally principal.

A principal divisor is obviously locally principal. Thus div(f) is Cartier for all f € C(X)*.
Exercise 8.1. Let D and E be Cartier divisors. Prove that D + F and —D are Cartier.

Exercise 8.2. Let D ~ E be linearly equivalent Weil divisors. Prove that D is Cartier if and only
if £ is Cartier.

If D is locally principal relative to the open cover {U;};cr, then we can find f; € C(X)* such
that D‘U, = div(f;) on U;. We say that {(U;, f;) }ier is local data for D.

Exercise 8.3. Let {(Uj;, fi) }ier be local data for a Cartier divisor D.
a. Prove that f;/f; € Ox(U; NU;)* for all ¢, 5 € I. Hint: Use Corollary 7.4.
b. Prove that D is effective if and only if f; € Ox(U;) for all 4 € I. Hint: Use Proposition 7.2.

For an example of a Weil divisor which is not Cartier, consider the affine surface X = V(zy —
2?) C C3. The z-axis Y = V(y, z) is contained in V, so that Y is a Weil divisor on X. However,
one can show that Y is not a Cartier divisor (see Example 6.11.3 in [5, I1.6]).

There is one nice case where Weil and Cartier divisors coincide.
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Theorem 8.2. Let X be a normal variety such that the local ring Ox , Is a unique factorization
domain for every p € X. Then every Weil divisor on X is Cartier.

This is proved in Proposition 6.11 of [5, I1.6]). We should also mention that if X is smooth,
then Ox , is a unique factorization domain for all p. It follows that Weil and Cartier divisors
coincide on smooth varieties.

The Standard Definition. Definition 8.1 differs from what one usually finds in the literature.
The more common definition starts with local data {(U;, f;)}ier satisfying part a of Exercise 8.3
and defines two local data {(U;, fi) }ier, {(V},95)}jes to be equivalent if f;/g; € Ox(U; N'V;)* for
all (7,7) € I x J. Then a Cartier divisor is an equivalance class of local data.

There is also more sophisticated way to define Cartier divisors which avoids equivalence classes.
We have the sheaf O% whose sections over U are the invertible elements in the ring Ox (U), and
we can also regard C(X)* as a constant sheaf on X. Then one can show that a Cartier divisor is a
global section of the quotient sheaf C(X)*/O%. See [5, page 141] for details.

The Picard Group. We denote the set of all Cartier divisors on a normal variety X by

Div(X).

This is a subgroup of WDiv(X) by Exercise 8.1. Furthermore, since every principal divisor is
Cartier, we have Divy(X) C Div(X). Then we define the Picard group of X to be the quotient

(8.1) Pic(X) = Div(X)/Divo(X).

We will give a more sophisticated definition of Pic(X) in §10. (Note that (8.1) explains why the
group of principal divisors is denoted Divy(X) rather than WDiv((X).) Since Div(X) is a subgroup
of WDiv(X), we get a canonical injection

Pic(X) — CI(X).
In analogy with Exercise 2.7, we have the following exact sequence.
Exercise 8.4. Let X be a normal variety. Prove that there is an exact sequence
1 - Ox(X)" = C(X)" — Div(X) — Pic(X) = 0,

where the map C(X)* — Div(X) sends f to div(f) and the map Div(X) — Pic(X) is the natural
homomorphism.

§9. The Sheaf of a Weil Divisor

Definition and Basic Properties. Let D be a Weil divisor on a normal variety X. We will show
that D determines a sheaf Ox (D) of Ox-modules on X. As noted in §3, the sections of a sheaf F
over U C X can be written

F(U)=I(U,F)=H"U,F).

For Ox (D), we will find it convenient to use the middle notation. Thus, given a Zariski open subset
U C X, we define

L(U,0x (D)) = {f € C(X)" | (div(f) + D), > 0} U {0}.
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Lemma 9.1. The above definition makes Ox (D) into a sheaf of Ox-modules on X.

Proof. We first show that I'(U, Ox (D)) is an additive subgroup of C(X). It suffices to prove this
for U = X. Let D =Y""_; a;D;. Then f € I'(X,Ox(D)) if and only if ordp,(f) > —a; for all 7. If
g € C(X)* also has this property, then so does f + g since

ordp, (f + ¢) > min(ordp,(f),ordp,(g9)) > —a;.

Since div(—f) = div(f), we see that I'(U, Ox (D)) is a subgroup of C(X).
We next show that this is a module over I'(X,Ox) = Ox(X). Given f € I'(X,0x(D)) and
g € I'(X,Ox), we know that div(f) + D > 0 and div(g) > 0. Then

div(gf) + D =div(g) + div(f) + D >0

since a sum of effective divisors is effective. This proves that gf € ['(X,Ox (D)) and gives the
desired module structure.
Finally, we omit the proof that Ox (D) is a sheaf in the Zariski topology. O

Exercise 9.1. The trivial Weil divisor is denoted 0. Prove that Ox(0) coincides with the structure
sheaf Ox. Hint: Use Proposition 7.2.

We next show that linearly equivalent divisors give isomorphic sheaves.

Proposition 9.2. If D ~ E are linearly equivalent Weil divisors, then Ox (D) and Ox(F) are
isomorphic as sheaves of O x-modules.

Proof. By assumption, we have D = E + div(g) for some g € C(X)*. Then

f E€T(X,0x (D)) « div(f)+D >0
< div(f) + E + div(g) > 0
— div(fg) + E >0
= fgeT(X,0x(E)).

Thus multiplication by ¢ induces an isomorphism I'(X,Ox (D)) ~ I'(X,Ox(E)) which is clearly
an isomorphism of Ox (X)-modules.

The same argument works over any Zariski open set U, and the isomorphisms are easily seen
to be compatible with the restriction maps. O

Weil Divisors on an Affine Variety. Now suppose that X = Spec(R) is affine and let K be the
field of fractions of R. If D is a Weil divisor on X = Spec(R), then I'(X, Ox (D)) is an R-submodule
of K. We first prove that this R-module is finitely generated.

Proposition 9.3. Let D be a Weil divisor on the normal affine variety X = Spec(R). Then
['(X,0x (D)) is a finitely generated R-module.

Proof. We will prove the existence of h € R — {0} such that hI'(X, Ox (D)) C R. This will imply
that hI'(X, Ox (D)) is an ideal of R and hence has a finite basis since R is Noetherian. It will follow
immediately that I'(X, Ox (D)) is finitely generated as an R-module.

Write D = Y7_, a;D;. Since |J;_, D; is a proper subvariety of X, we can find g € R — {0}
which vanishes on each D;. Then ordp,(g) > 0 for every i, so that mordp,(g) > a; for all i,
provided m € Z is sufficiently large. Since div(g) > 0, it follows that m div(g) — D > 0.
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Now let f € I'(X, Ox(D)). This means div(f) + D > 0, and thus
div(¢g™f) = mdiv(g) + div(f) = mdiv(g) — D +div(f)+ D >0

since a sum of effective divisors is effective. By Proposition 7.2, we conclude that ¢ f € Ox(X) =
R. Hence h = g™ € R has the desired property. |

A finitely generated R-submodule of K is called a fractional ideal. Thus Proposition 9.3 shows
that T'(X, Ox (D)) is a fractional ideal.

Exercise 9.2. Let D > 0 be an effective divisor on the affine variety X = Spec(R). Prove that
the fractional ideal I'(X, Ox (—D)) is an ordinary ideal (i.e., I'(X, Ox (—D)) C R). Hint: As usual,
you will use Proposition 7.2.

We next show that the R-module I'(X, Ox (D)) determines the entire sheaf Ox (D). Recall
that if ¢ € R is nonzero, the Zariski open set X, defined by the nonvanishing of g is Spec(Ry),
where Ry = {a/g™ | a € R, m > 0} is the localization of R at g.

Proposition 9.4. Let D be a Weil divisor on the normal affine variety X = Spec(R). If g € R is
nonzero, then

9.1) (X, 05(D) = {1 1 € (X, 0x(D)), m 2 0}.

Proof. Let D = )", a;D; and write {1,...,s} as a disjoint union I U J where D; N X, # () for
i€l and Dj C V(g) for j € J.
Suppose that h € ['(X,, Ox (D)), so that (div(h) —l—D)‘X > 0. Thus ordp, (h) > —a; fori € I.

Notice that there is no constraint on ordp, (k) for j € J. However, we do know that g vanishes on
Dj for j € I, so that ordp, (g) > 0. Then we can pick m € Z sufficiently large so that

mordp,(g) +ordp,(h) >0 for j € J.

Since div(g) > 0, it follows easily that div(¢"™h) + D > 0 on X. Thus f = ¢g"h € T'(X, Ox (D)),
and then h = f/¢g™ has the desired form. From here, the proposition follows easily. O

Since the open sets X, for g € R — {0} form a basis for the Zariski topology of X = Spec(R),
Proposition 9.4 shows that the sheaf Ox (D)) is uniquely determined by its global sections.

Coherent Sheaves. The right-hand side of (9.1) is the localization of I'(X,, Ox (D)) at g. More
generally, given any finitely generated R-module M, one can define its localization My, and then

one gets a unique sheaf M on X = Spec(R) such that
F(ng M) = Mg

for any g € R — {0}. See [5, IL.5] for details.

For example, if X = Spec(R), Theorem 3.1 of §3 implies R= Ox, and if D is a Weil divisor
on X, Proposition 9.4 implies M = Ox (D) for M = T'(X, Ox (D)).

This leads to the following general definition. Suppose that F is a sheaf of Ox-modules on an
arbitrary variety X. Then F is coherent if there is an affine open cover {U;};e; of X such that for

every i € I, there is a finitely generated Ox (U;)-module M; such that

]I'

= M;.
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The simplest example of a coherent sheaf is Ox. Furthermore, the above discussion shows that
if D is a Weil divisor on a normal variety X, then Ox (D) is also coherent. We will learn more
properties of Ox (D) in the next section.

§10. Invertible Sheaves and Line Bundles

We next discuss an especially nice class of sheaves.

Invertible Sheaves. Let F be a sheaf of Ox modules on a variety X. Then F is invertible if it
is locally trivial, i.e., if there is a Zariski open cover of {U;};c; of X such that ]—"‘ ~ Ox ‘U

It follows 1mmed1ately that Ox is invertible. A more interesting result is the followmg char-
acterization of when the sheaves Ox (D) from §4 are invertible.

Theorem 10.1. Let D be a Weil divisor on a normal variety X. Then Ox (D) is an invertible
sheaf if and only if D is a Cartier divisor.

Proof. First suppose that D is Cartier. Since invertibility is a local property and D is locally
principal, we may assume that X = Spec(R) is affine and D = div(f) for f € K. Then D ~ 0, so
that by Proposition 9.2, we have

Ox(D) ~ Ox(O) = Ox,

where the last equality is by Exercise 9.1.

Going the other way, suppose that Ox (D) is invertible. We need to prove that D is locally
principal. By restricting to a suitable affine open subset, we can assume that X = Spec(R) and
that Ox ~ Ox (D). Taking global sections, we get an isomorphism

R~T(X,0x(D)) C K.

Under this isomorphism, suppose that 1 € R maps to 1/g € I'(X, Ox (D)). The proof of Proposition
9.2 shows that if we set £ = D—div(g), then gI'(X,Ox (D)) = ['(X,Ox(E)). ThusI'(X,Ox (F)) =
R, so that Ox = Ox(F). If we can show that this forces £ = 0, then D = div(g) will follow,
proving that D is locally principal and hence Cartier.

Thus we may assume Ox = Ox(F). Then 1 € I'(X,Ox(FE)), which implies £ > 0. If
E # 0, then some irreducible hyperface Y appears in E with positive coefficient. Observe that
any affine open subset of X which meets Y has the same property. By Exercise 10.1 below, we
can then assume that div(h) = Y for some h € R. It follows that div(1/h) + E > 0, so that
1/h e I'(X,0x(F)) =I'(X,0x) = R. Since h is also in R, this implies that A is invertible, which
means div(h) = 0. This contradicts div(h) =Y and proves E = 0, as desired. O

Exercise 10.1. Let Y be an irreducible hypersurface in a normal variety X. The goal of this
exercise is to find an affine open subset U and a rational function h € C(X) such that Y NU # 0
and div(h)‘U =YnU.
a. Explain why there is h € Ox y with ordy (h) = 1.
b. Show that h from part a has the following two properties:
o div(h) =Y + 77, b;E;, where the E; are distinct from Y.
e h is defined on a Zarlskl open set U’ such that U' NY # 0.
c. Show that U' — (E4 - U E,.) is nonempty and has nonempty intersection with Y.
d. Now show that the desired affine open subset U exists.
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We can also improve Proposition 492 as follows.

Exercise 10.2. Let D and E be Cartier divisors on a normal variety X. Then D ~ FE if and only
if Ox(D) ~ Ox(FE) as Ox-modules. Hint: Adapt the argument of Theorem 10.1.

A deeper result is the following. See Proposition 6.15 of [5, I1.6] for a proof.

Theorem 10.2. Let X be a normal variety. Then every invertible sheaf on X is isomorphic to
Ox (D) for some Cartier divisor D on X.

We remark that invertible sheaves are sometimes called locally free sheaves of rank one.

The Picard Group. Given invertible sheaves F and G on X, one easily proves that

(10.1) F®oxG and FY = Homy, (F,Ox)

are also invertible. It is also easy to show that the canonical map F ®p, F¥ — Ox induces an
isomorphism

f@ova ~ Oy,

which explains the name “invertible”. These properties show that the set of isomorphism classes
of invertible sheaves on X has a natural group structure under tensor product. We call

(10.2) Pic(X) = {isomorphism classes of invertible sheaves on X}.

the Picard group of X,

Since we already defined Pic(X) in (8.1) of §8, we need to explain why these definitions are
equivalent. We begin with the following important result, whose proof we omit (see Proposition 6.13
of [5, 11.6] for a proof).

Theorem 10.3. If D and E are Cartier divisors on a normal variety X, then there are canonical
isomorphisms

Ox (D + E) ~ Ox(D) ®o, Ox(E)
Ox(-D) ~ Ox(D)".

If we combine Theorem 10.2 and 10.3, we get a surjective homomorphism Div(X) — Pic(X),
and Exercise 5.2 shows that the kernel is Div(X). We conclude that for normal varieties, the two
definitions coincide. However, the definition given in (10.2) is more general, since it makes sense
for any variety X.

We should also note that one can define Pic(X) using sheaf cohomology. Here is the basic
idea. Let X be a normal variety (for simplicity), and consider the exact sequence of sheaves

(10.3) 1 - 0% — C(X)* > C(X)* /0% — L.

In §8, we mentioned that Div(X) = H°(X,C(X)*/O%). Taking sheaf cohomology, (10.3) gives the
long exact sequence

0— H°(X,0%) - H*(X,C(X)*) » H*(X,C(X)*/O%) = H'(X,0%) - H'(X,C(X)*) —
One can show that H'(X,C(X)*) = 0, and then the above long exact sequence reduces to

1 — Ox(X)* = C(X)* = Div(X) - HY(X,0%) — 0.
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Comparing this to Exercise 8.4, we conclude that H'(X, O%) = Pic(X). This is the sheaf-theoretic
definition of the Picard group.

Rank One Reflexive Sheaves. Now suppose that D is a Weil divisor on a normal variety X. If
D is not Cartier, then we know that Ox (D) is not invertible. So what kind of sheaf is it?
Given any sheaf F of Ox-modules, we can define F¥ as in (10.1), and there is a canonical

map F — FVV. Then we say that F is reflezive of rank one if:

e There is a nonempty Zariski open set U such that F ‘U is trivial.

e F is torsion-free.

e The map F — FVV is an isomorphism.
Any invertible sheaf is reflexive. Of more interest is the following result. A proof can be found in
[2, Chapter VII] and [8, Appendix to §1].

Proposition 10.4. If D is a Weil divisor on a normal variety X, then Ox (D) is a reflexive sheaf
of rank one.

The dual of a reflexive sheaf of rank one is again reflexive of rank one, though the tensor
product F ®p, G of reflexive sheaves of rank one need not be reflexive of rank one. However, the
double dual

(10.4) (F ®0xG)VY
is reflexive of rank one. Furthermore, if D and E are Weil divisors on X, then
Ox(D + E) = (Ox (D) ®o0y Ox(E))"".

One can also show that up to isomorphism, every reflexive sheaf of rank one on X comes from a Weil
divisor on X. It follows that the class group Cl(X) can be regarded as the group of isomorphism
classes of rank one reflexive sheaves under the product (10.4). Details of all of this can be found
int [2, Chapter VII] and [8, Appendix to §1].

In most of algebraic geometry, invertible sheaves are more important than rank one reflexive
sheaves. However, there are situations where rank one reflexive sheaves occur naturally. An example
is given by the canonical sheaf of a Cohen-Macaulay variety X, which is only reflexive of rank one
(unless the variety is Gorenstein, in which case the canonical sheaf is invertible). The canonical
sheaf plays an important role in duality theory.

Line Bundles. A line bundle over a variety X consists of a map of varieties 7 : L — X such that
X has an open cover {U, };c; with the following two properties:
e For each i € I, here is an isomorphism f; : 7=3(U;) ~ U; x C such that @ = m; o f;, where
m : U; x C — U; is projection on the first factor.
e For each pair ¢,j € I, then there is g;; € Ox (U; NU;)* such that the composition

fjofi_l : (U@ﬂU]) x C — (UiﬂUj) x C
is given by (z,A) = (z,9;(z) A).
Since the g;; € Ox (U; N U;)* are built from f; o fz._l, it follows easily that they satisfy the cocycle

condition

(10.5) gik(x) = gij(2)gjn(z) for i,5,ke€elxecUnNU;NUy.
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The trivial line bundle is given by m : X x C — X, where m; is projection on the first factor.

Given z € X and a line bundle 7 : L — X, we call L, = 7~ !(z) the fiber of L over z. If
z € U;, we can use f; to define an isomorphism L, ~ C. If we also have x € Uy, then we get a
different isomorphism L, ~ C, but the two are related by multiplication by g;;(z). It follows that
L, has a natural structure as a 1-dimensional vector space, i.e., a complex line. Since L is the
union of the L, this explains the term “line bundle”.

The Sheaf of Sections of a Line Bundle. Let w : L — X be a line bundle over X. If U C X
is Zariski open, then a section of L over U is a morphism s : U — L such that 7o s(z) = z for all
x € U. Then set

(10.6) I'(U,L) = H°(U, L) = {all sections of L over U}.

Since the fibers are vector spaces, we can add sections and mutiply them by elements of Ox (U).
It follows that (10.6) defines a sheaf of Ox-modules. We will denote this sheaf by Ox (L).

Exercise 10.3. Let 71 : X x C — X be the trivial bundle.
a. Show that a section over U C X is described by s(z) = (z, f(x)), x € U, for a unique
f € 0x(U).
b. Show that the sheaf defined by (10.6) is Ox.

Now let L be any line bundle over X. Since locally L looks like U; x C, Exercise 10.3 shows
that locally, the sheaf Ox (L) looks like Oy, ~ O X‘U-' We have thus proved the following result.

Proposition 10.5. If L is a line bundle over X, then Ox (L) is an invertible sheaf.

We can also reverse this process by showing that every invertible sheaf is the sheaf of sections
of some line bundle. In the special case when X is normal, we can do this as follows. Suppose
that £ is an invertible sheaf. By Theorem 10.2, £ ~ Ox (D) for some Cartier divisor D. Then let
{(Ui, fi) }ier be local data for D, so that div(fi)‘Ui = D‘Ui for all 4.

With this set-up, let g;; = fi/f;, and note that g;; € Ox (U; N U;)* by Exercise 8.3. Further-
more, it is obvious that the g;; satisfy cocycle condition (10.5). We saw in §3 how we can construct
X from the U; by gluing U; and Uj together along U; N U;. In the same way, we can glue U; x C
and U; x C together by identifying

(10.7) (z,A) «— (z,9i5(z) ),

where

($,)\) € (UiﬂUj) xCcU;xC
($,gij($) )\) € (UiﬂUj) x C C Uj x C.

The cocycle condition (10.5) shows that thes identifications satisfy the compatibility conditions
from the subsection “Gluing Together Affine Varieties” in §3. It follows that we can glue together
the U; x C to get a variety L. In the same way, the projections U; x C — U; patch together to give
a morphism 7 : L — X. We will omit the proof of the following proposition.

Proposition 10.6. 7 : L — X is a line bundle whose sheaf of sections is isomorphic to the
invertible sheaf L ~ Ox (D) we began with.

It follows that we have three closely related objects: Cartier divisors, invertible sheaves, and
line bundles. In algebraic geometry, it is customary (though slightly inaccurate) to use the terms
“invertible sheaf” and “line bundle” interchangeably.
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The Zero Divisor of a Section. Suppose that the sheaf of sections of a line bundle L is the
invertible sheaf Ox (D), where D is a Cartier divisor. Then we can think of a global section in
two very different ways: as a section s : X — L such that 7 o s = 1x, and as a rational function
f € C(X)* such that div(f) + D > 0. How are these related?

The easiest way to see the link between these notions of “global section” is to define the zero
divisor of a nonzero section s : X — L. Given such an s, consider an open covering {U;};c; which
trivializes the bundle. Then, using the restriction of s to U;, we get the composition

(10.8) s;:U; — 7 HU;) ~U; x C — C.

This is a morphism, so that s; € Ox(U;). Furthermore, one checks that s; = g;5s;, on U; N Uj.
Since g;; € Ox(U; NU;)*, It follows easily that the divisors div(s;) on U; patch together to give
a divisor on X. This divisor is clearly locally principal (it equals div(s;) on U;). Thus we get a
Cartier divisor

divo(s) € Div(X).

Furthermore, divg(s) > 0 since each s; € Ox (U;). This relates to the global sections of Ox (D) as
follows.

Theorem 10.7. Let L be the line bundle corresponding to the invertible sheaf Ox (D), and suppose
that s € I'(X, L) — {0} corresponds to f € I'(X,Ox (D)) — {0}. Then

divy(s) = div(f) + D.

Proof. First note that both sides of the equation are effective divisors. Given f € C(X)* with
div(f) + D > 0, we can define a section s of L as follows. We constructed L using the local data
{(Ui, fi) }ier for D. Then D‘Ul = div(fi)‘U,, so that
div(f£)|,, = (@iv(f) + D)|,, > 0.

If we set s; = ff;, then Proposition 7.2 shows that s; € Ox(U;). Furthermore, the construction
of L shows that the sections U; — U; x C defined by = — (z, s;(z)) patch to give a section s of L
over X. (This is part of the proof of Proposition 10.6.) Since divy(s) is constructed by patching
together the divisors div(s;) = div(f f;), it follows easily that divy(s) = div(f) + D, as claimed. O

The divisor divy(s) tells us where the section s vanishes. However, being a divisor, div(s)
records more than just the hypersurfaces Y C X where s is zero—the coefficient of Y in divy(s)
also tells us to what order s vanishes on Y.

Exercise 10.4. Let L be a line bundle over X.
a. Show that the divisors divg(s) for s € I'(X, L) — {0} are all linearly equivalent.
b. Let D be an effective Cartier divisor on X which is linearly equivalent to divy(s) for some
s € I'(X, L) — {0}. Prove that D = divy(¢) for some t € I'(X, L)

Given a line bundle L over X, the set of effective divisors
|L| = {divo(s) | s € I'(X, L) — {0}}
is called a complete linear system. This terminology is justified by part b of the Exercise 10.4.

Exercise 10.5. If L is a line bundle on a complete variety X. Prove that |L| can be identified
with the projective space P(I'(X, L)). Hint: Exercise 3.4 will be useful.



36 DaviD A. Cox

Finally, we discuss the “quotient” of two sections of a line bundle. If s, are nonzero sections
of L, then for each x € X, s(x) and ¢(z) are elements of the one-dimensional vector space L,. This
space doesn’t have a canonical basis, so we can’t regard s(z) and t(z) as numbers. But if ¢(x) # 0,
then the “quotient” s(x)/t(x) makes sense: it the unique number A such that s(z) = At(z). This
suggests that s/t should be a rational function on X.

Exercise 10.6. Let s,t be nonzero sections of L over X, and let {U;};c; be an open cover of X
which trivializes L.
a. By working on U;, show that s/t = s;/t;, where s; is as in (10.8) and ¢; is defined similarly.
b. Explain why s;/t; = s;/t; as rational functions on U; N Uj;.
Part b gives a well-defined element of C(X)* which we denote s/t.

Exercise 10.7. Suppose that L is the line bundle built from the Cartier divisor D on X. Let s,t
be nonzero sections of L over X which correspond to f,g € I'(X, Ox(D)). Prove that the rational
function s/t of Exercise 10.6 is given by f/g.

Invertible Sheaves on Projective Space. Let zo,...,z, be homogeneous coordinates on P".
Recall from §2 that P" is covered by the open sets U; = P" — V(z;) and that

C(Pr™) = {g | fyg € Clzg,...,z,] homogeneous of equal degree, g # 0}.

Now let H = V(z() C P". This is clearly a divisor, and is Cartier since P" is smooth. Our
goal is to determine the global sections of Op»(dH) for d > 0.

Exercise 10.8. Show that {(U;,z3/z%)}o<i<n is local data for dH.

We can now describe the global sections of Opn (dH).
Proposition 10.8. Ifd > 0, then the global sections of Opn(dH) are

L(P", Opn(dH)) = {% | f is homogeneous of degree d}.
0

Proof. Let f/g € I'(P", Opn(dH)), where f and g are relatively prime. Then div(f/g) +dH > 0.

If we restrict to U;, then this becomes (div(f/g) + div(zd ‘U > 0. Equivalently,

div(f /g~ o/zd)|,, 20,

so that f/g-zd/x% € Opn(U;). Can can think of U; as a copy of C* with variables < for j#£ If
f, g have degree m, then we can write f/g- zd/z¢ as

(10.9) PG5 (2"
g(z_(;a RS Z_T:) Z;
For each 4, this must be a polynomial in = for j # 7. When ¢ = 0, the second factor in (5.9) is 1,
which means that the denominator of the ﬁrst factor must be constant since f and g are relatlvely
prime. Multiplying f and g by suitable constants, we can assume g(l, i; . mo) =1, and then
g = zy* follows since g is homogeneous of degree m.
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Furthermore, if we then consider (10.9) with i # 0, then f(”;—[:, . x—”) (m—")d_m is a polynomial

Twg ) \wyg

in i—j for j # 4. Since f and g = z{* are relatively prime, it follows that d > m. Then multiplying

f and g by xg_m shows that f and ¢g have the desired form.

Conversely, we need to show that f/z lies in T'(P", Opn (dH)) whenever f is homogeneous of

degree d. This follows easily using the above methods. We omit the details. (|

Exercise 10.9. Show that I'(P", Op» (dH)) = {0} if d < 0.

It is customary to write Opn (dH) as Opn(d). Then, up to isomorphism, the global sections of

Op~ (d) form the vector space of homogeneous polynomials of degree d.

Exercise 10.10. Show that every invertible sheaf on P" is isomorphic to Op»(d) for some d € Z.
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