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2 David A. CoxAknowledgementsThese notes are intended to help students make the transition between the elementary as-pets of algebrai geometry (varieties in aÆne and projetive spae, et.) and some of its moresophistiated aspets (normal varieties, Weil and Cartier divisors, et.).The material presented here is taken from the notes prepared for the ourse on tori varietiesgiven at the Summer Shool on The Geometry of Tori Varieties held in Grenoble in 2000. Iam grateful to Laurent Bonavero and Mihel Brion for inviting me to partiipate in the SummerShool. Their omments (and those of Gottfried Barthel and the other partiipants) are greatlyappreiated. I also thank Henning �Ulfarsson for pointing out some typos to �x.x1. AÆne VarietiesBasi De�nitions. For simpliity, we will work over the omplex numbers C . Then, given poly-nomials f1; : : : ; fs 2 C [x1; : : : ; xn℄, we get the aÆne varietyV(f1; : : : ; fs) = fa 2 C n j f1(a) = � � � = fs(a) = 0g:More generally, if I � C [x1; : : : ; xn℄ is an ideal, then we de�neV(I) = fa 2 C n j f(a) = 0 for all f 2 Ig:Exerise 1.1. Let I = hf1; : : : ; fsi � C [x1; : : : ; xn℄ be the ideal generated by f1; : : : ; fs. Show thatV(I) = V(f1; : : : ; fs). (All ideals in C [x1; : : : ; xn℄ are of this form by the Hilbert Basis Theorem.)Conversely, given an aÆne variety V � C n, we get the idealI(V ) = ff 2 C [x1; : : : ; xn℄ j f(a) = 0 for all a 2 V g:Exerise 1.2. Let V � C n be an aÆne variety and I � C [x1; : : : ; xn℄ an ideal. Show that:a. V = V(I(V )).b. I � pI � I(V(I)), where pI = ff 2 C [x1; : : : ; xn℄ j fm 2 I; m � 1g is the radial of I.The above exerise atually works over any �eld. But sine C is algebraially losed, we alsohave the following basi result of Hilbert.Hilbert Nullstellensatz. For any ideal I � C [x1; : : : ; xn℄, we have pI = I(V(I)).A proof an be found in Chapter 4 of [3℄. This theorem allows us to translate algebra intogeometry and vie versa. Here is an example.Exerise 1.3. Use the Nullstellensatz to show the following.a. Every maximal ideal of C [x1; : : : ; xn℄ is of the form hx1�a1; : : : ; xn�ani, where ai 2 C . Thusthere is a one-to-one orrespondene between points of C n and maximal ideals of C [x1; : : : ; xn℄.b. An ideal I is radial if I = pI. Show that the orrespondene of part a extends to a one-to-oneorrespondene aÆne varieties of C n  ! radial ideals of C [x1; : : : ; xn℄:



Introdution to Algebrai Geometry 3Coordinate Rings. We next onsider polynomial funtions on an aÆne variety V . Note that twopolynomials f; g 2 C [x1; : : : ; xn℄ give the same funtion on V if and only if their di�erene lies inI(V ). Thus the ring of suh funtions is naturally isomorphi to the quotient ringC [V ℄ = C [x1; : : : ; xn℄=I(V ):This ring is alled the oordinate ring of V . There is a lose relation between V and C [V ℄. Thefollowing two exerises explore aspets of this relation.Exerise 1.4. Two aÆne varieties V1 � C n and V2 � C m are isomorphi if there are polynomialmaps F : C n ! C m and G : C m ! C n suh that F (V1) = V2, G(V2) = V1, and the ompositionsF ÆG and G Æ F are the identity when restrited to V2 and V1 respetively. Prove that two aÆnevarieties are isomorphi if and only if their oordinate rings are isomorphi C -algebras.Exerise 1.5. Let V � C n be an aÆne variety.a. Given a = (a1; : : : ; an) 2 C n, show that a 2 V if and only if I(V ) � hx1 � a1; : : : ; xn � ani.b. Conlude that there is a one-to-one orrespondene between points of aÆne variety V andmaximal ideals of its oordinate ring C [V ℄.We an haraterize oordinate rings of aÆne varieties as follows.Proposition 1.1. A C -algebra R is isomorphi to the oordinate ring of an aÆne variety if andonly if R is a �nitely generated C -algebra with no nonzero nilpotents (i.e., if f 2 R satis�es fm = 0,then f = 0).Proof. If R = C [V ℄ for V � C n, then we need only show that R has no nonzero nilpotents. Thisis easy, for if f 2 C [x1; : : : ; xn℄ and fm vanishes on V , then so does f . Thus I(V ) is radial, whihmeans that C [V ℄ = C [x1; : : : ; xn℄=I(V ) has no nonzero nilpotents.Conversely, R �nitely generated as a C -algebra implies that there is a surjetive homomorphism' : C [x1; : : : ; xn℄ ! R. Let I = ker', and note that I = pI sine R has no nonzero nilpotents.Then let V = V(I) � C n. The oordinate ring of V is C [x1; : : : ; xn℄=I(V ). Using the Nullstellensatz,we see that I(V ) = I(V(I)) = pI = I. Thus C [V ℄ is isomorphi to R.To emphasize the lose relation between V and C [V ℄, we will sometimes write(1:1) V = Spe(C [V ℄):Furthermore, this an be made anonial by identifying V with the set of maximal ideals of C [V ℄via Exerise 1.5. This is part of a general ontrution in algebrai geometry whih takes anyommutative ring R and de�nes the aÆne sheme Spe(R). The general de�nition of Spe uses allprime ideals of R and not just the maximal ideals as we have done.* Readers wishing to learn moreabout shemes should onsult [4℄ and [5℄.Subvarieties and the Zariski Topology. Given an aÆne variety V � C n, a subset W � V isa subvariety if W is also an aÆne variety. This easily implies that I(V ) � I(W ). In terms of theoordinate ring R = C [V ℄, we onlude that there is a one-to-one orrespondenesubvarieties of Spe(R) ! radial ideals of R:* Thus (1.1) should be written V = Spem(C [V ℄), the maximal spetrum of C [V ℄.



4 David A. CoxAn aÆne variety has two interesting topologies. First, we have the indued topology from theusual topology on C n. This is sometimes alled the lassial topology . The other topology is de�nedas follows. Given a subvariety W � V , the omplement V �W is alled a Zariski open subset ofV . One easily sees that the Zariski open subsets of V form a topology on V , whih is alled theZariski topology . Sine every subvariety of V is losed in the lassial topology (polynomials areontinuous), it follows that every Zariski open subset is also open in the lassial topology.Exerise 1.6. Zariski open subsets tend to be large. Here are some examples.a. Show that the Zariski topology on C is the o�nite topology. This is the topology whose opensets are ; and omplements of �nite sets.b. Show that the Zariski topology on C n is T1 but not T2.Given a subset S � V , its losure S in the Zariski topology is the smallest subvariety of Vontaining S. We all S the Zariski losure of S. It is easy to give examples where this di�ers fromthe losure in the lassial topology.Finally, we remark that some Zariski open subsets of an aÆne variety V are themselves aÆnevarieties. Given f 2 C [V ℄� f0g, let Vf = fa 2 V j f(a) 6= 0g � V .Lemma 1.2. Vf is Zariski open in V and has a natural struture as an aÆne variety.Proof. Suppose V � C n and I(V ) = hf1; : : : ; fsi. Also pik g 2 C [x1; : : : ; xn℄ so that f = g+I(V ).Then Vf = V �V(f1; : : : ; fs; g), so that Vf is Zariski open in V .Consider a new variable y and letW = V(f1; : : : ; fs; 1�gy) � C n�C . Then (a; b) 2 C n�C liesinW if and only if a 2 Vf (and then b = 1=g(a)). In other words, the projetion map C n�C ! C nmaps W bijetively to Vf . Thus we an identify Vf with the aÆne variety W � C n � C .Irreduible Varieties and Rational Funtions. An aÆne variety V is irreduible if it annotbe written as union of subvarieties V = V1 [ V2 where Vi 6= V . We an think of irredubility inalgebrai terms as follows.Exerise 1.7. Let V � C n be an aÆne variety. Prove that V is irreduible, I(V ) � C [x1; : : : ; xn℄is a prime ideal , the oordinate ring C [V ℄ is an integral domain.Here is an example we will refer to later.Exerise 1.8. Let V = V(xy � zw) � C 4.a. Show that xy � zw is irreduible in C [x; y; z; w℄.b. Conlude that I(V ) = hxy � zwi and that V is irreduible. Thus the oordinate ring of V isC [V ℄ = C [x; y; z; w℄=hxy � zwi.. Prove that C [V ℄ ' C [ab; d; a; bd℄ � C [a; b; ; d℄. Hint: Prove that V an be parametrizedsurjetively by (a; b; ; d) 7! (ab; d; a; bd).When V is irreduible, the integral domain C [V ℄ has a �eld of frations denoted C (V ). Thisis the �eld of rational funtions on V . For example, when V = C n, C [V ℄ is the polynomial ringC [x1; : : : ; xn℄ and C (V ) is the �eld of rational funtions C (x1; : : : ; xn). In general, given f=g 2 C (V ),the equation g = 0 de�nes a proper subvariety W � V and f=g : V �W ! C is a well-de�nedfuntion. This is written f=g : V�! C and is alled a rational funtion on V .Exerise 1.9. If V is irreduible and f 2 C [V ℄ is nonzero, then the loalization of C [V ℄ at f isC [V ℄f = fg=f ` 2 C (V ) j g 2 C [V ℄; ` � 0g:



Introdution to Algebrai Geometry 5Prove that Spe(C [V ℄f ) is the aÆne variety Vf from Lemma 1.2.An important result is that every aÆne variety V an be written as a unionV = V1 [ � � � [ Vrwhere eah Vi is irreduible and Vi 6� Sj 6=i Vj . We all V1; : : : ; Vr the irreduible omponents of V .The existene and uniqueness of this deomposition is proved in Chapter 4 of [3℄.Finally, some referenes use di�erent terminology. For example, in Hartshorne's book [5℄,V(I) � C n is alled an \algebrai set" and the term \aÆne variety" is reserved for the ase whenV(I) is irreduible. We will not use this terminology, though we should point out that our mainobjets of interest are tori varieties, whih are by de�nition irreduible.Normal AÆne Varieties. Let R be an integral domain with �eld of frations K. Then R isintegrally losed if every element of K whih is integral over R (meaning that it is a root of a monipolynomial in R[x℄) atually lies in R. Here are two examples:� One an easily show that any UFD is integrally losed.� The set OK of all algebrai integers in a number �eld K is integrally losed.Exerise 1.10 below will give an example of an integral domain whih is not integrally losed.Let V be an irreduible aÆne variety, so that C [V ℄ is an integral domain. Then V is normalif C [V ℄ is integrally losed. For example, C n is normal sine its oordinate ring C [x1; : : : ; xn℄ is aUFD and hene integrally losed. Here is an example of a non-normal aÆne variety.Exerise 1.10. Let C = V(x3 � y2) � C 2. This is a plane urve with a usp at the origin.a. Show that C is irreduible and that C [C℄ = C [x; y℄=hx3 � y2i.b. Let X and Y be the osets of x and y in C [C℄ respetively. This gives Y=X 2 C (C). Showthat Y=X =2 C [C℄ and that (Y=X)2 = X.. Explain why part b implies that C [C℄ is not integrally losed.Another example is the irreduible variety V = V(xy � zw) � C 4 studied in Exerise 1.8. Itis not obvious, but V is normal. This an be proved using the desriptionC [V ℄ ' C [ab; d; a; bd℄ � C [a; b; ; d℄given in part  of Exerise 1.8. The ring C [ab; d; a; bd℄ is a semigroup algebra. Then normalityfollows from a property alled saturation.For us, normality is ruial beause tori varieties are all normal. (One an de�ne non-normaltori varieties, but the niest results hold only in the normal ase.)Finally, any irreduible aÆne variety V has a normalization. To de�ne this, �rst onsiderC [V ℄0 = f� 2 C (V ) : � is integral over C [V ℄g:We all C [V ℄0 the integral losure of C [V ℄. It is easy to see that C [V ℄0 is integrally losed. Withmore work, one an also show that C [V ℄0 is a �nitely generated C -algebra (see Theorem 9 onpages 267{268 of [11℄). This gives the normal aÆne varietyV 0 = Spe(C [V ℄0)whih is the normalization of V . Note that the natural inlusion C [V ℄ � C [V ℄0 = C [V 0℄ orrespondsto a map V 0 ! V . This is alled the normalization map.



6 David A. CoxExerise 1.11. Let C = V(x3 � y2) � C 2 be the urve onsidered in Exerise 1.10.a. Let X and Y have the same meaning as in Exerise 1.10. Show that C [Y=X℄ � C (C) is theintegral losure of C [C℄.b. Show that the normalization map is the map C ! C de�ned by t 7! (t2; t3).x2. Projetive VarietiesProjetive Spae. We de�ne n-dimensional projetive spae to be the setPn = (C n+1 � f0g)=�;where � is the equivalene relation on C n+1 � f0g given by(2:1) (a0; : : : ; an) � (b0; : : : ; bn) () there is � 2 C � with (a0; : : : ; an) = �(b0; : : : ; bn):Here, we use C � to denote C �f0g, whih is a group under multipliation. As we vary � 2 C �, thepoints �(b0; : : : ; bn) lie on a line through the origin. Thus we get a bijetionPn ' flines through the origin in C n+1g:Exerise 2.1. Pn ontains the subset (C �)n+1= �. Note also that (C �)n+1 is a group underomponent-wise multipliation.a. Show that on (C �)n+1, the equivalene lasses of � are the osets of the subgroup H =f(�; : : : ; �) j � 2 C �g � (C �)n+1. Conlude that (C �)n+1=H � Pn.b. Construt a group isomorphism (C �)n+1=H ' (C �)n.Exerise 2.1 shows that Pn ontains an isomorphi opy of (C �)n. Pn is a lassi example of atori variety.We note that Pn has a lassial topology inherited from the usual topology on C n+1 � f0g.Exerise 2.2. Let S2n+1 be the unit (2n+ 1)-sphere entered at the origin in C n+1.a. Show that the natural map S2n+1 ! Pn is onto and onlude that Pn is ompat.b. Show that the �bers of S2n+1 ! Pn are isomorphi to S1. This is the Hopf �bration.Homogeneous Coordinates. A point p of Pn will be written (a0; : : : ; an). This is only uniqueup to the equivalene relation (2.1). We all (a0; : : : ; an) homogeneous oordinates of p. In somebooks, this is written p = [a0; : : : ; an℄ or p = (a0 : : : : : an) to emphasize the non-unique nature ofthese oordinates. We prefer to write p = (a0; : : : ; an), where it will be lear from the ontext thatwe are using homogeneous oordinates.Projetive Varieties and Homogeneous Ideals. A polynomial f 2 C [x0; : : : ; xn℄ is homoge-neous of degree d if every term of f has total degree d. This is equivalent to the identity(2:2) f(�x0; : : : ; �xn) = �df(x0; : : : ; xn):Exerise 2.3. Show that any f 2 C [x0; : : : ; xn℄ an be written uniquely in the form f =Pd�0 fdwhere fd is homogeneous of degree d. We all fd the homogeneous omponents of f .



Introdution to Algebrai Geometry 7Now suppose that f 2 C [x0; : : : ; xn℄ is homogeneous of degree d. Given p 2 Pn, we an't de�ne\f(p)" sine using p = (a0; : : : ; an) would givef(p) = f(a0; : : : ; an);while using p = �(a0; : : : ; an) would givef(p) = f(�a0; : : : ; �an) = �df(a0; : : : ; an):However, the equation f(p) = 0 is well-de�ned sine � 2 C �. Thus, homogeneous polynomialsf1; : : : ; fs 2 C [x0; : : : ; xn℄ de�ne the projetive varietyV(f1; : : : ; fs) = fa 2 Pn j f1(a) = � � � = fs(a) = 0g � Pn:To formulate this in terms of ideals, we say that an ideal I � C [x0; : : : ; xn℄ is homogeneous ifit is generated by homogeneous polynomials.Exerise 2.4. Show that an ideal I � C [x0; : : : ; xn℄ is homogeneous if and only if for all f 2C [x0; : : : ; xn℄, we have f 2 I , I ontains the homogeneous omponents of f .If I � C [x0; : : : ; xn℄ is a homogeneous ideal, then we have the projetive varietyV(I) = fa 2 C n j f(a) = 0 for all f 2 Ig:Conversely, given a projetive variety V � C n, we get the homogeneous idealI(V ) = ff 2 C [x0; : : : ; xn℄ j f(a) = 0 for all a 2 V g:Exerise 2.5. We all hx0; : : : ; xni � C [x0; : : : ; xn℄ the irrelevant ideal . Show that V(I) = ;whenever I ontains a power of the irrelevant ideal.Exerise 2.5 is atually part of the projetive version of the Nullstellensatz, whih goes asfollows. We refer the reader to [3, Chapter 8℄ for a proof.Projetive Nullstellensatz. Let I � C [x0; : : : ; xn℄ be a homogeneous ideal.a. V(I) = ; if and only if hx0; : : : ; xnim � I for some m � 0.b. V(I) 6= ; implies I(V(I)) = pI.Most of the onepts de�ned for aÆne varieties in C n an be extended to projetive varietiesin Pn in the obvious way:� W � V is a subvariety of a projetive variety V � Pn if W is a projetive variety in Pn.� If V � Pn is a projetive variety, then we all Pn � V a Zariski open subset of Pn.� The Zariski topology is the topology on Pn whose open sets are the Zariski open sets.� The Zariski losure S of a subset S � Pn is the smallest projetive variety ontaining S.Rational Funtions on Projetive Spae. We've already seen that a homogeneous polynomialin C [x1; : : : ; xn℄ does not give a funtion on Pn. However, the quotient of two suh polynomialsworks, provided they have the same degree. More preisely, suppose that f; g 2 C [x1; : : : ; xn℄ havedegree d and that g 6= 0. Then (2.2) shows that we get a well-de�ned funtionfg : Pn �V(g) �! C



8 David A. CoxAs in x1, we write this as f=g : Pn�! C and say that f=g is a rational funtion on Pn.Exerise 2.6. The set of all rational funtions on Pn isC (Pn) = nfg j f; g 2 C [x0; : : : ; xn℄ homogeneous of equal degree, g 6= 0o:Prove that C (Pn) is sub�eld of C (x0; : : : ; xn).Mappings Between Projetive Varieties. Suppose that V � Pn is a projetive variety andf0; : : : ; fm 2 C [x0; : : : ; xn℄ are homogeneous polynomials all of the same degree. Then we say thatf0; : : : ; fm have no base points on V if V \V(f0; : : : ; fm) = ;.Exerise 2.7. Suppose that f0; : : : ; fm 2 C [x0; : : : ; xn℄ are homogeneous of degree d and have nobase points on V . Prove that the map (a0; : : : ; an) 7! (f0(a0; : : : ; an); : : : ; fm(a0; : : : ; an)) induesa well-de�ned funtion F : V �! Pm.An important fat is that in the situation of Exerise 2.7, the image F (V ) � Pm is a projetivesubvariety. When V = Pn, this is proved in [3, Chapter 8℄, and the proof extends easily to overthe general ase.Exerise 2.8. When V � C n is an aÆne variety and F : V ! C m is a polynomial map, theimage F (V ) � C m need not be a subvariety. For example, suppose that V = V(xy � 1) � C 2 andF : V ! C is F (x; y) = x. Prove that F (V ) is not a subvariety of C . The fat that F (V ) is asubvariety in the projetive ase is one reason why projetive varieties are so useful in algebraigeometry.AÆne Open Subsets. We an regard Pn as a union of aÆne spaes as follows. For 0 � i � n,onsider the Zariski open set Ui = Pn �V(xi).Exerise 2.9. As above, Ui = Pn �V(xi) = f(a0; : : : ; an) 2 Pn j ai 6= 0g.a. Show that Ui ' C n via (a0; : : : ; an) 7! (a0=ai; : : : ; ai�1=ai; ai+1=ai; : : : ; an=ai).b. Show that V(xi) ' Pn�1 via (a0; : : : ; an) 7! (a0; : : : ; ai�1; ai+1; : : : ; an).. Show that Pn = U0 [ � � � [ Un.This exerise shows that we an regard Pn as C n together with a opy of Pn�1 \at in�nity".Also, the open over of Exerise 2.9 shows that projetive varieties are unions of aÆne varieties.Exerise 2.10. Let V = V(f1; : : : ; fs) � Pn be a projetive variety. Prove that under the map Ui 'C n from Exerise 2.9, V \Ui orresponds to an aÆne variety de�ned by the vanishing of ~f j , where~fj(x0; : : : ; xi�1; xi+1; : : : ; xn) = fj(x0; : : : ; xi�1; 1; xi+1; : : : ; xn). We all ~fj the dehomogenizationof fj with respet to xi.Another way to think about Ui ' C n is to use x0=xi; : : : ; xi�1=xi; xi�1=xi; : : : ; xn=xi asvariables on C n. Then the dehomogenization map of Exerise 2.10 is just f 7! f=xdi , wheref 2 C [x0; : : : ; xn℄ is homogeneous of degree d. This approah preserves rational funtions.Exerise 2.11. Show that the map f=g 7! (f=xdi )=(g=xdi ) indues an isomorphism of �eldsC (Pn) ' C (x0=xi; : : : ; xi�1=xi; xi+1=xi; : : : ; xn=xi);



Introdution to Algebrai Geometry 9where C (Pn) is the �eld of rational funtions de�ned in Exerise 2.6.Weighted Projetive Spae. We next disuss a generalization of Pn. Given positive integersq0; : : : ; qn satisfying gd(q0; : : : ; qn) = 1, we get the weighted projetive spaeP(q0; : : : ; qn) = (C n+1 � f0g)=�;where � is the equivalene relation on C n+1 � f0g given by(a0; : : : ; an) � (b0; : : : ; bn) () there is � 2 C � with (a0; : : : ; an) = (�q0b0; : : : ; �qnbn):Obviously P(1; : : : ; 1) = Pn. We will eventually show that P(q0; : : : ; qn) is a tori variety. Thefollowing exerise shows that P(q0; : : : ; qn) ontains a opy of (C �)n.Exerise 2.12. As above, let q0; : : : ; qn be positive integers with gd(q0; : : : ; qn) = 1.a. Prove that (C �)n+1= eH � P(q0; : : : ; qn), where eH = f(�q0 ; : : : ; �qn) j � 2 C �g.b. Prove that (C �)n+1= eH ' (C �)n. Hint: Make (q0; : : : ; qn) the �rst olumn of a matrix M 2GL(n+ 1;Z) and use M to de�ne an automorphism of (C �)n+1.We all q0; : : : ; qn the weights of the weighted projetive spae. In terms of the polynomialring C [x0; : : : ; xn℄, this means that xi has degree qi, and f 2 C [x0; : : : ; xn℄ is weighted homogeneousof (weighted) degree d if(2:3) f(�q0x0; : : : ; �qnxn) = �df(x0; : : : ; xn):It is then easy to see that we an de�ne weighted projetive subvarieties in P(q0; : : : ; qn) usingweighted homogeneous polynomials.There are several ways to think about weighted projetive spaes. The following two exerisesgive two ways to represent P(1; 1; 2).Exerise 2.13. Consider P(1; 1; 2) with variables x0; x1; x2 of degrees 1; 1; 2 repsetively.a. Show that x20; x0x1; x21; x2 are (weighted) homogeneous of degree 2.b. Show that (a0; a1; a2) 7! (a20; a0a1; a21; a2) is a well-de�ned map F : P(1; 1; 2) ! P3.. Show that the map F of part b is injetive and that its image is the surfae de�ned by theequation y0y2 � y21 = 0 (where y0; y1; y2; y3 are the oordinates of P3).Exerise 2.14. Show that (a0; b0; 0)! (a0; b0; 20) gives a well-de�ned map P2 ! P(1; 1; 2). Alsoshow that this map is surjetive and is two-to-one exept above (0; 0; 1) 2 P(1; 1; 2).We an also over a weighted projetive spae by aÆne open subsets, though in this ase, theopen sets will be aÆne varieties instead of aÆne spae C n. Rather than work this out in general,we will restrit to the ase of P(1; 1; 2). Here, we have the Zariski open sets Ui = f(a0; a1; a2) 2P(1; 1; 2) j ai 6= 0g.Exerise 2.15. Let U0; U1; U2 be the subsets of P(1; 1; 2) de�ned above.a. Show that U0 ' C 2 via (a; b; ) 7! (b=a; =a2) and U1 ' C 2 via (a; b; ) 7! (a=b; =b2).b. Let V = V(xz � y2) � C 3. Show that U2 ' V via (a; b; ) 7! (a2=; ab=; b2=).One shows that P(1; 1; 2) is the abstrat variety obtained by \gluing" two opies of C 2 togetherwith the aÆne variety U2 from part  of Exerise 2.15. But we must �rst understand what \gluing"means.



10 David A. Coxx3. Abstrat VarietiesThe De�nition of Manifold. To better understand the de�nition of abstrat variety, we beginby realling the de�nition of a C1 n-manifold. Suh a manifold onsists of a seond ountableHausdor� topologial spaeM together with an open over U� and homeomorphisms f� : U� ! V�,where V� � Rn is open, suh that for every �; �, the ompositionf� Æ f�1� : fa(U� \ U�)! f�(U� \ U�)is a di�eomorphism.It turns out that there is a simpler, though more sophistiated, way of giving this de�nition.We begin with an open set V � Rn. The sheaf of C1 funtions on V , denoted O1V , is de�ned byassigning to eah open set U � V the R-algebra(3:1) O1V (U) = ff : U ! R j f is a C1 funtiong:More generally, given a topologial spae X, we say that F is sheaf of R-algebras on X if forevery open set U � X, there is an R-algebra F(U) suh that:� If V � U are open, then there is an R-algebra homomorphism rUV : F(U)! F(V ).*� rUU is the identity and if W � V � U are open, then rVW Æ rUV = rUW .*� If U = S� U�, where U� is open, then we have an exat sequene0! F(U)! Y� F(U�) !! Y�;� F(U� \ U�);where the seond arrow is the map F(U) ! F(U�) and the double arrows are the mapsF(U�)! F(U� \ U�) and F(U�)! F(U� \ U�).Elements of F(U) are alled setions of F over U , and when V � U , rUV : F(U) ! F(V ) therestrition map. In the third bullet, exatness at F(U) means that setions of F(U) are determinedloally, i.e., two setions are equal if and only if their restritions to the U� are equal. Exatnessat Q� F(U�) means that ompatible setions path, i.e., setions over the U� whih agree on theirintersetions ome from a setion over U .Given a sheaf F and U � X open, the setions of F over U an be denotedF(U) = �(U;F) = H0(U;F):We will use the �rst of these in this setion but will swith to the seond for x9. When thinking interms of sheaf ohomology, one usually uses the third.When F is a sheaf of R-algebras on X, we all the pair (X;F) a ringed spae over R . Forexample, when V � Rn is open, (3.1) gives a ringed spae over R denoted (V;O1V ).Exerise 3.1. Complete the following de�nitions:a. The restrition F ��U of a sheaf F on X to an open set U � X is de�ned by : : :b. Ringed spaes (X;F), (Y;G) over R are isomorphi if there are a homeomorphism � : X ! Yand, for U � Y open, an R-algebra isomorphism �#U : G(U)! F(��1(U)), suh that : : :We an now reformulate the de�nition of C1 n-manifold.* These two bullets say that F : Open sets of X ! R-Algebras is a ontravariant funtor.



Introdution to Algebrai Geometry 11Exerise 3.2. Let n be a positive integer and let (M;OM ) be a ringed spae over R . Assume thatevery point in M has a neighborhood U suh that (U;OM ��U ) is isomorphi to (V;O1V ) for someopen subset V � Rn. Prove that M has the struture of a C1 n-manifold.Exerise 3.3. Conversely, let M be a C1 n-manifold as de�ned at the beginning of the setion.a. Given U �M open, de�ne what it means for f : U ! R to be C1.b. Use the de�nition given in part a to de�ne the sheaf OM of C1 funtions on M and show that(M;OM ) is a ringed spae over R whih satis�es the ondition of Exerise 2.2.For a C1 n-manifold M , the sheaf OM of Exerise 3.3 is alled the struture sheaf of M .Exerise 3.4. Give sheaf-theoreti de�nitions of a Ck n-manifold and a omplex n-manifold.The Struture Sheaf of an AÆne Variety. We �rst show that some of the onstrutions forC n given in x1 generalize to an arbitrary aÆne variety V = Spe(R).Exerise 3.5. Let V = Spe(R) be an aÆne variety.a. Given an ideal I � R, de�ne V(I) � V . Then prove that V(I) is a subvariety of V and thatall subvarieties of V arise in this way.b. Given a subvariety W � V , de�ne I(W ) � R and prove that I(W ) is a radial ideal of R.. Prove the Nullstellensatz, i.e., that I(V(I)) = pI for any ideal I � R.d. Prove the Hilbert Basis Theorem, i.e., that any ideal I � R an be written in the formI = hf1; : : : ; fsi, where f1; : : : ; fs 2 R.In x1, we de�ned the Zariski open Vf � V for any f 2 R. Furthermore, when V is irreduible,we showed that Vf = Spe(Rf ), whereRf = fg=fm 2 C (V ) j g 2 R; m � 0gis the loalization of R at f , as de�ned in Exerise 1.9 of x1.Exerise 3.6. Show that the sets Vf form a basis of the Zariski topology of V .The struture sheaf of an irreduible aÆne variety V = Spe(R) is the sheaf of C -algebras inthe Zariski topology de�ned as follows. Given a Zariski open U � V , a funtion � : U ! C isregular if for every p 2 V , there is fp 2 R suh that p 2 Vfp � U and ���Vfp 2 Rfp . ThenOV (U) = f� : U ! C j � is a regular funtiong:We will not show that OV is a sheaf of C -algebras|we refer the reader to [4℄ or [5℄ for the detailsof the proof. These referenes also show how to de�ne OV when V is not irreduible.Exerise 3.7. Let V = C 2 and set U = C 2 � f(0; 0)g. Show that OV (U) = C [x; y℄.The struture sheaf OV has two important properties.



12 David A. CoxTheorem 3.1. Let V = Spe(R) be an irreduible aÆne variety.a. OV (V ) = R.b. If f 2 R, then OV ��Vf = OVf .Proof. For part a, it suÆes to show OV (V ) � R. If � : V ! C is a morphism, then for eahp 2 V , there are fp; gp 2 R suh that � = gp=fmpp and fp(p) 6= 0. Let I = hfmpp j p 2 V i � R.It follows easily that V(I) = ;, so that by the Nullstellensatz, pI = I(V(I)) = I(;) = R. Thus1 2 R, whih implies that 1 =Pp2S hpfmpp where hp 2 R and S � V is �nite. Then� =Xp2S hpfmpp � =Xp2S hp gp 2 R:For part b, let U � V be Zariski open. If � : U ! C is a morphism, then for every p 2 U ,there is p 2 Vfp � U suh that � 2 Rfp . Now suppose in addition that U � Vf . If we regard fp asan element of Rf , then one easily sees that� 2 Rfp � Rffp = (Rf )fp :Furthermore, Vfp \ Vf = (Vf )fp shows that p 2 (Vf )fp � U � Vf . By de�nition, this implies that� 2 OVf (U), and part b now follows easily.Combining parts a and b of Theorem 3.1, we onlude thatOV (Vf ) = OV ��Vf (Vf ) = OVf (Vf ) = Rfwhen V = Spe(R) and f 2 R.The De�nition of Abstrat Variety. We now give the main de�nition of this setion.De�nition 3.2. An abstrat variety (X;OX ) is a ringed spae over C where eah p 2 X hasa neighborhood U suh that the restrition (U;OX ��U) is isomorphi (as a ringed spae over C ) to(V;OV ) for some aÆne variety V .Given an abstrat variety (X;OX ), an open set U � X is an aÆne open if (U;OX ��U ) isisomorphi (over C ) to the ringed spae of an aÆne variety. The topology on X is alled theZariski topology sine it restrits to the Zariski topology in eah aÆne open subset.Exerise 3.8. Let (X;OX ) be an abstrat variety and let U � X be Zariski open. Show thatevery setion � 2 OX(U) gives a funtion � : U ! C . We say that � a regular funtion on U .Exerise 3.9. Let (X;OX ) be an abstrat variety and let Y � X be Zariski losed. If U1 � Y isopen, de�ne OY (U1) to be the set of all funtions � : U1 ! C suh that for every p 2 U1, there isU � X open and a regular funtion ~� : U ! C with p 2 U \ Y � U1 and ���U\Y = ~���U\Y .a. Show that U1 7! OY (U1) is a sheaf of C -algebras on Y .b. When (X;OX ) is an aÆne variety and Y � X is a subvariety, prove that the sheaf de�ned inpart a is preisely the sheaf of regular funtions on Y. When (X;OX) is an abstrat variety and Y � X is Zariski losed, prove that the sheaf of parta makes (Y;OY ) into an abstrat variety.Given an abstrat variety (X;OX ), we say that Y � X is a subvariety if it is Zariski losed.The above exerise shows that Y inherits the struture of an abstrat variety in a natural way. Wede�ne (X;OX) to be irreduible if X is not the union of two proper subvarieties.



Introdution to Algebrai Geometry 13Exerise 3.10. Prove that an abstrat variety is irreduible if and only if it is onneted and everyaÆne open subset is irreduible.Let us show that Pn an be regarded as an abstrat variety. In order to de�ne the struturesheaf OPn , we will use the �eld of rational funtions C (Pn) de�ned in Exerise 2.6 of x2. If U � Pnis Zariski open, then a funtion � : U ! C is regular if for eah p 2 U , there is f=g 2 C (Pn) suhthat g(p) 6= 0 and ���UnU\V(g) = (f=g)��UnU\V(g). ThenOPn(U) = f� : U ! C j � is a regular funtiongde�nes a sheaf OPn on Pn. We also have the aÆne open sets Ui = f(a0; : : : ; an) 2 Pn j ai 6= 0g. InExerise 2.11, we noted that if we regard x0=xi; : : : ; xi�1=xi; xi�1=xi; : : : ; xn=xi as oordinates onC n, then the map Ui ' C n indues an isomorphismC (Pn) ' C (x0=xi; : : : ; xi�1=xi; xi�1=xi; : : : ; xn=xi):Using this isomorphism, it is easy to see that (Ui;OPn ��Ui) is isomorphi to (C n;OC n). This provesthat Pn is an abstrat variety. By Exerise 3.10, we see that Pn is irreduible.As is ustomary, we often write an abstrat variety (X;OX ) as simply X, and we will alsodrop the \abstrat". Thus, \the variety X" is short for \the abstrat variety (X;OX)".Finally, a variety X also has a lassial topology , whih is the oarsest topology on X thatagrees with the lassial topology on every aÆne open subset of X. The struture sheaf OX is nota sheaf in the lassial topology. However, one an de�ne the losely related sheaf OanX of analytifuntions on X, whih is a sheaf in the lassial topology. We all (X;OanX ) the omplex analytispae assoiated to the variety X. See [5, Appendix B℄ and [9℄ for more details.The Funtion Field of an Irreduible Variety. If X is irreduible, then a rational funtionon X is a regular funtion � : U ! C , where U is a nonempty Zariski open. Two rational funtionsare equivalent if they agree on some nonempty Zariski open, and the set of equivalene lasses isdenoted C (X). One an prove that C (X) is a �eld, alled the funtion �eld of X.Exerise 3.11. Let U be an aÆne open of an irreduible variety X. Prove that C (U) ' C (X).We say that � 2 C (X) is de�ned at p 2 X there is a regular funtion �0 : U ! C suh thatp 2 U and � is equivalent to �0. For � 2 C (X), the set fp 2 X j � is de�ned at pg is the largestZariski open on whih � is de�ned.The Loal Ring of a Point. Given an irreduible variety X and a point p 2 X, we de�ne theloal ring of X at p to be OX;p = f� 2 C (X) j � is de�ned at pg:The key feature of OX;p is desribed in the following exerise.Exerise 3.12. Let OX;p de�ned as above.a. Show that mX;p = f� 2 OX;p j �(p) = 0g is a maximal ideal of OX;p.b. Given � 2 OX;p, show that �(p) 6= 0 implies that ��1 2 OX;p.. Use part b to show that mX;p is the unique maximal ideal of OX;p.



14 David A. CoxIn general, a ommutative ring R with unit is alled a loal ring if it has a unique maximalideal m. Thus OX;p is a loal ring by Exerise 3.12.For an arbitrary variety X (not neessarily irreduible), one an de�ne the loal ring OX;p tobe the diret limit OX;p = lim�!p2U OX(U);where the limit is over all neighborhoods U of p. This is desribed in [4℄ and [5℄.Morphisms. A morphism or regular map onsists of a ontinuous map � : X ! Y and, for eahZariski open U � Y , a C -algebra homomorphism �# : OY (U)! OX(��1(U)), suh that:� �# is ompatible with restrition maps.� For eah p 2 X, the map of loal rings �#p : OY;�(p) ! OX;p indued by �# is a loalhomomorphism, meaning that mY;�(p) = (�#p )�1(mX;p).A morphism (�; �#) : (X;OX )! (Y;OY ) is usually written � : X ! Y .An important results is that if V = Spe(R) and W = Spe(S) are irreduible aÆne varieties,then giving a morphism � : V !W is equivalent to giving a C -algebra homomorphism �� : S ! R.This is proved in [4℄ and [5℄.Gluing Together AÆne Varieties. We �rst observe that a variety X an be onstruted by\gluing together" aÆne varieties along Zariski open subsets. Namely, De�nition 3.2 implies thatX has an aÆne open over U�, so that f� : U� ' V�, where V� is an aÆne variety. Then, for any�; �, the set V�� = f�(U� \ U�) � V�is Zariski open in V�, and the mapg�� = f� Æ f�1� : V�� ! V��is an isomorphism of Zariski open subsets. Furthermore, these maps are ompatible as follows:� g�� = 1V� for every �.� g���V��\V� Æ g����V��\V� = g� ��V��\V� for every �; �; .We all these the ompatibility onditions.Conversely, suppose we have a olletion(fV�g�; fV��g�;� ; fg��g�;�);where eah V� is an aÆne variety, V�� � V� is Zariski open, and the g�� : V�� ' V�� areisomorphisms whih satisfy the above ompatibility onditions. Then we get the topologial spaeX =a� V�= �where a 2 V� is equivalent to b 2 V� if a 2 V�� and b = g��(a). Furthermore, the struture sheavesOV� path to give a sheaf OX , and from here it is straightforward to prove that (X;OX) is a varietywith an aÆne open over U� suh that U� ' V� for every �. In this situation, we say that X isobtained from the V� by gluing them together along the V�� via the g�� .Exerise 3.13. Let V0 = V1 = C , V01 = V10 = C � f0g and g01(x) = g10(x) = x�1. Prove thatthis data determines the variety P1.



Introdution to Algebrai Geometry 15Cartesian Produts. If X and Y are varieties, then their artesian produt X�Y exists, thoughthe de�nition is subtle. The diÆulty is that the usual produt topology on X�Y gives the wrongtopology. Here is an example.Exerise 3.14. Show that the produt topology on C � C , where we use the Zariski topology oneah fator, is not the Zariski topology on C 2.To get the orret de�nition of artesian produt, we begin with aÆne varieties. Suppose thatV = V(f1; : : : ; fs) � C n, with variables x1; : : : ; xn and W = V(g1; : : : ; gt) � C m, with variablesy1; : : : ; ym. Also let R and S be the oordinate rings of V and W respetively.Exerise 3.15. Let V = Spe(R) and W = Spe(S) be as above.a. Show that V �W � C n � C m = C n+m is the aÆne variety V(f1; : : : ; fs; g1; : : : ; gt), wherefi(x1; : : : ; xn); gj(y1; : : : ; ym) 2 C [x1; : : : ; xn; y1; : : : ; ym℄.b. Show that the oordinate ring of V �W is R
C S.Thus the artesian produt of V = Spe(R) and W = Spe(S) is V �W = Spe(R 
C S).In the general ase, we think of X as obtained by gluing together Zariski open subsets of U�,and similarly Y omes from gluing together Zariski open subsets of U 0� . Then X�Y is onstrutedby gluing together the aÆne varieties U� � U 0� along suitable Zariski open subsets. We omit thedetails of the onstrution, whih an be found in [4℄ and [5℄.As an example, Pn � Pm an be onstruted by this method. If x0; : : : ; xn are oordinates onPn and y0; : : : ; ym are oordinates on Pm, then one an show that V � Pn � Pm is Zariski losedif and only if V = V(f1; : : : ; fs), where fi 2 C [x0; : : : ; xn; y0; : : : ; ym℄ is bihomogeneous, meaningthat it is separately homogeneous in the xi and in the yj .Finally, we should mention that if X and Y are varieties, then the lassial topology on X�Yis the produt of the lassial topologies on X and Y respetively.x4. Separated, Quasi-Compat, Complete, and Normal VarietiesSeparatedness. Given any variety X, the diagonal map of X is the map � : X ! X �X de�nedby �(p) = (p; p) for p 2 X. Then X is separated if the image of the diagonal map �(X) is Zariskilosed in X �X. Here are some examples of separated and non-separated varieties.Exerise 4.1. Consider the variety X onstruted by identifying two opies of C along C �f0g (inthe language of x3, this orresponds to V0 = V1 = C , V01 = V10 = C �f0g and g01(x) = g10(x) = x).Show that X is not separated.Exerise 4.2. Prove that C n is separated by onsidering V(x1 � y1; : : : ; xn � yn) � C n � C n.Exerise 4.3. Prove that a subvariety of a separated variety is separated.Combining Exerises 4.2 and 4.3, we see that aÆne varieties are always separated. We willomit the proof that Pn is separated. By Exerise 4.3, it follows that every projetive variety isseparated.In [9℄, Serre haraterized separatedness in terms of the lassial topology as follows.



16 David A. CoxTheorem 4.1. A variety X is separated if and only if it is Hausdor� in the lassial topology.For example, this theorem makes it easy to see that the variety X of Exerise 4.1 is notHausdor� (the two opies of the origin in X do not have disjoint neighborhoods). This also givesa quik proof of Exerise 4.2 sine C n is Hausdor� in the lassial topology.Here are some properties of separated varieties.Proposition 4.2. Let X be a separated variety.a. If U and V are aÆne open subsets of X, then U \ V is also an aÆne open of X.b. If f; g : Y ! X is a morphism of varieties, then fy 2 Y j f(y) = g(y)g is a subvariety of Y .Proof. For part a, we note that � : X ! X � X identi�es U \ V with �(X) \ (U � V ).We know that �(X) is Zariski losed in X � X by the de�nition of separated. It follows that�(X) \ (U � V ) is Zariski losed in U � V . But U � V is aÆne by Exerise 3.15, whih impliesthat �(X) \ (U � V ) ' U \ V is also aÆne.To prove part b, onsider � : Y ! X �X de�ned by �(y) = (f(y); g(y)). Sinefy 2 Y j f(y) = g(y)g = ��1(�(X));we see that fy 2 Y j f(y) = g(y)g is Zariski losed in Y sine � is ontinuous in the Zariski topologyand (by separatedness) �(X) is Zariski losed in X �X.When studying di�erentiable manifolds, one always assumes that the underlying topologialspae is Hausdor�. Similarly, in algebrai geometry, the varieties of interest are almost alwaysseparated. For this reason, we heneforth reserve the term variety for a separated variety. Anon-separated variety will be alled a pre-variety .Quasi-Compatness. We say that a variety X is quasi-ompat if X is the union of �nitely manyaÆne open subsets. Any aÆne variety is quasi-ompat. An more interesting example is Pn, whihis quasi-ompat sine it the union of the aÆne open subsets Ui = Pn �V(xi).Here are the main properties of quasi-ompat varieties.Proposition 4.3. Let X be a quasi-ompat variety. Then:a. Every subvariety of X is quasi-ompat.b. Every Zariski open subset of X is quasi-ompat.. Every Zariski open over of X has a �nite subover.Proof. Suppose that X = U1 [ � � � [ Ur where Ui is an aÆne open subset of X. Then part a isobvious sine Y = (Y \ U1) [ � � � [ (Y \ Ur) where Y \ Ui is an aÆne open of Y .For part b, U = (U \U1)[� � �[ (U \Ur) shows that we an assume that X = Spe(R) is aÆne.Then X �U = V(I) for some ideal I � R. The Hilbert basis theorem implies I = hf1; : : : ; fsi, andit follows that U = Ssi=1Xfi .Finally, we leave part  as Exerise 4.4 below.Exerise 4.4. Prove that every Zariski open over of a quasi-ompat variety has a �nite subover.This exerise explains there the term \quasi-ompat" omes from. As with separatedness,the varieties of interest to algebrai geometers are almost always quasi-ompat. Hene, from nowon, whenever we say variety , we will mean a separated quasi-ompat abstrat variety.Completeness and Properness. A variety X is omplete if the following onditions hold:� X is separated.



Introdution to Algebrai Geometry 17� X is quasi-ompat.� For every other variety Y , the projetion mapX�Y ! Y is losed, meaning that the projetionof a Zariski losed set in X � Y is Zariski losed in Y .Exerise 4.5. Prove that a subvariety of a omplete variety is omplete.Exerise 4.6. Prove that the artesian produt of two omplete varieties is omplete.Exerise 4.7. Prove that a variety X is omplete if and only if for all m � 1, the projetion mapX � C m ! C m is losed.The most basi example of a omplete variety is Pn.Theorem 4.4. Pn is omplete.For a proof, note that Theorem 6 of [3, Chapter 8, x5℄ implies that the projetion map Pn �C m ! C m is losed. By Exerise 4.7, it follows that Pn is omplete, and then any projetive varietyis omplete by Exerise 4.5.The ompleteness of Pn is losely related to elimination theory. To see why, suppose we havepolynomials f1; : : : ; fs 2 C [x0; : : : ; xn; y1; : : : ; ym℄whih are homogeneous in x0; : : : ; xn. We an think of the fi as homogeneneous polynomials in thexi whose oeÆients depend on the \parameters" yj . Question: For whih values of the parametersyj do the equations(4:1) f1 = � � � = fs = 0have a nontrivial solution in the xi?To answer this question, observe that (4.1) de�nes a subvariety W � Pn� C m, and the valuesof the yj for whih (4.1) has a nontrivial solution is the image of W under the projetion mapPn � C m ! C m. Sine Pn is omplete, this image is a variety in C m. In other words, there arepolynomials g1; : : : ; gl 2 C [y1; : : : ; ym℄ suh that (4.1) has a nontrivial solution for the parametervalues yj = bj if and only if(4:2) g1(b1; : : : ; bm) = � � � = gl(b1; : : : ; bm) = 0:Chapter 8 of [3℄ gives an algorithm for �nding the polynomials gi. We say that (4.2) is obtainedfrom (4.1) by eliminating the variables x0; : : : ; xn. This is projetive elimination theory .Serre's paper [9℄ haraterizes ompleteness in terms of the lassial topology as follows.Theorem 4.5. A variety X is omplete if and only if it is ompat in the lassial topology.This theorem and the Hopf �bration S2n+1 ! Pn give another proof that Pn is omplete (seeExerise 2.2). In algebrai geometry, ompleteness is a very useful property. Here is a result whihindiates some reasons why.Theorem 4.6. Let X be a omplete variety.a. If � : X ! Y is a morphism, then its image �(X) is a subvariety of Y .b. If � : C � ! X is a morphism, then � extends uniquely to a morphism ~� : C ! X.. X is aÆne if and only if X is a �nite set of points.



18 David A. Coxd. If X is onneted, then every morphism � : X ! C is onstant.Part b of this theorem says that if X is omplete and � : C � ! X is a morphsim, thenlimt!0 �(t) exists as a unique element of X whenever X is omplete (in fat, limt!1 �(t) alsoexists, so that � extends to a map P1 ! X). Part  says that aÆne varieties are very far frombeing omplete sine these onepts oinide only for �nite sets of points.Finally, ompleteness losely related to the idea of a proper morphism � : X ! Y . We will notgive the de�nition here (we would need to de�ne �bered produts and morphisms of �nite type).The reader should onsult [4℄ and [5℄ for the full de�nition. Turning to Serre's lassi paper [9℄ yetagain, we an haraterize properness in terms of the lassial topology as follows.Theorem 4.7. A morphism � : X ! Y is proper if and only if it is proper in the lassial topology,meaning that ��1(C) � X is ompat whenever C � Y is ompat.Exerise 4.8. Prove that X is omplete if and only if X ! fptg is proper, where fptg is thevariety onsisting of a single point.Normality. A variety X is normal if it is irreduible and the loal ring OX;p is integrally losedfor every p 2 X. In order to relate this to the de�nition of normal aÆne variety given in x1, wewill need the following exerise.Exerise 4.9. Let R be an integral domain with �eld of frations K. A subset S � R is amultipliative subset if 1 2 S, 0 =2 S, and S is losed under multipliation. Then the loalization ofR at S is RS = fa=b 2 K j a 2 R; b 2 Sg.a. Prove that RS is the smallest subring of K ontaining R suh that every s 2 S is invertible inRS .b. Prove that if R is integrally losed, then RS is integrally losed.We now show that for aÆne varieties, our two notions of normal oinide.Proposition 4.8. Let V = Spe(R) be an irreduible aÆne variety. The R is integrally losed ifand only if the loal ring OV;p is integrally losed for all p 2 V .Proof. We know from x1 that p 2 V orresponds to a maximal ideal M � R. Then R �M is amultipliative subset sine maximal implies prime, and one easily shows thatOV;p = RR�M :If R is integrally losed, then Exerise 4.9 implies that OV;p is also integrally losed. Conversely, ifall of the OV;p are integrally losed, then one easily shows that\p2V OV;pis also integrally losed. However, this intersetion is preisely OV (V ), whih equals R by part aof Theorem 3.1 of x3. It follows that R is integrally losed.Proposition 4.8 has a following immediate orollary.



Introdution to Algebrai Geometry 19Corollary 4.9. An irreduible variety X is normal if and only if it is a union of aÆne varietiesU� = Spe(R�) where R� is integrally losed.x5. Smooth and Quasismooth VarietiesThe Dimension of a Variety. We were using a very naive notion of dimension when we assertedthat C n and (C �)n have dimension n. For an arbitrary variety X, there are several ways to de�nedimX rigorously. In the irreduible ase, we do this as follows.De�nition 5.1. The dimension of an irreduible variety X is:� The transendene degree of C (X) (this is the maximal number of algebraially independentelements of C (X)).� The maximum number n suh that one an �nd distint irreduible subvarieties; 6= V0 � V1 � � � � � Vn = X:It is not at all obvious that these de�nitions oinide, but they do|see [5℄. In the aÆne orprojetive ase, one an also de�ne dimension using the degree of an appropriate Hilbert polynomial.This approah is used in [3℄.Some important results onerning the dimension of a variety are:� C n, (C �)n and Pn have dimension n.� The dimension of a variety is the maximum of the dimensions of its irreduible omponents.� If W is a subvariety of V , then dimW � dimV . Furthermore, if V is irreduible and W is aproper subvariety, then dimW < dimV .� dimX � Y = dimX + dimY .� If V is an irreduible aÆne variety and f 2 C [V ℄ is not invertible, then every irreduibleomponent of V(f) � V has odimension 1.� Let V � Pn be irreduible of positive dimension and pik f 2 C [x0; : : : ; xn℄. If f doesn't vanishon V , then then every irreduible omponent of V \V(f) � V has odimension 1.The Dimension of a Variety at a Point. The dimension of a variety X at a point p 2 X,denoted dimpX, is de�ned as either:� The maximum of the dimensions of the irreduible omponents of X whih ontain p.� The Krull dimension of the loal ring OX;p (this is one less than the maximum length of ahain of prime ideals in OX;p).Some of the properties of the dimension at a point inlude:� dimX = maxp2X dimpX.� If p 2 Y � X, then dimp Y � dimpX.� If p 2 X and q 2 Y , then dim(p;q)X � Y = dimpX + dimp Y .The Zariski Tangent Spae. In multivariable alulus, one de�nes the tangent spae at a pointof a surfae in R3, and this generalizes to the tangent spae at a point of a di�erentiable manifold.In algebrai geometry, the Zariski tangent spae plays a similar role.De�nition 5.2. Let p be a point of a variety X and let mX;p be the maximal ideal of the loalring OX;p. Then the Zariski tangent spae is de�ned to beTp(X) = HomC (mX;p=m2X;p; C ):



20 David A. CoxExerise 5.2. Use OX;p=mX;p ' C to prove that mX;p=m2X;p has a natural struture as a vetorspae over C . This shows that De�nition 5.2 makes sense.Exerise 5.3. Let V � C n be an aÆne variety and p = (a1; : : : ; an) 2 V .a. Show that mCn;p = hx1 � a1; : : : ; xn � ani � OCn;p.b. Show that mCn;p=m2Cn;p has dimension n, and onlude that dimC Tp(C n) = n.. Use the surjetion OCn;p ! OV;p to onstrut natural inlusion Tp(V ) � Tp(C n).d. Conlude that dimC Tp(V ) � n.In the aÆne ase, page 32 of [5℄ shows how to ompute the Zariski tangent spaes as follows.Lemma 5.3. Let V � C n be a aÆne variety and let p 2 V . Also assume that I(V ) = hf1; : : : ; fsi.For eah i, let dp(fi) = �fi�x1 (p)x1 + � � �+ �fi�xn (p)xn:The Tp(V ) is isomorphi to the subspae of C n de�ned by dp(f1) = � � � = dp(fs) = 0.Exerise 5.4. Let V = V(x3 � y2) � C 2. For eah p 2 V , show that dimC Tp(V ) = 1 unless p isthe origin, in whih ase the dimension is 2.Exerise 5.5. If p 2 X and q 2 Y , prove that T(p;q)(X � Y ) ' Tp(X) � Tq(Y ). Hint: Redue tothe aÆne ase and use Lemma 2.3. See also Exerise 3.15 of x3.In general, we always have dimC Tp(X) � dimpX. See Exerise 5.10 of [5, Chapter I℄.Smooth Varieties. As with dimension, there are many ways to de�ne smoothness.De�nition 5.4. A variety X is smooth or nonsingular at p 2 X if dimC Tp(X) = dimp(X). Wesay that p is a singular point of X if it is not a smooth point.Sine Tp(X) = HomC (mX;p=m2X;p; C ), we see that X is smooth at p when dimp(X) equals thedimension of mX;p=m2X;p as a vetor spae over OX;p=mX;p. In terms of ommutative algebra, thismeans that p 2 X is smooth if and only if OX;p is a regular loal ring.By Exerise 5.3, every point of C n is smooth (suh a variety is alled smooth). For a point ofa subvariety of C n, we an test for smoothness as follows.Exerise 5.6. Let V � C n be an aÆne variety and let I(V ) = hf1; : : : ; fsi. Also let p 2 V and setd = dimp V . Then prove that V is smooth at p if and only if the Jaobian matrixJp(f1; : : : ; fs) = � �fi�xj (p)�1�i�s;1�j�nhas rank n� d. Hint: Use Lemma 5.3.Exerise 5.7. Let V = V(xy � zw). Prove that the origin is the only singular point of V .Exerise 5.8. Let p 2 X and q 2 Y . Prove that X � Y is smooth at (p; q) if and only if X and Yare smooth at p and q respetively. Hint: Use Exerise 5.5 and the properties of dimpX.Exerise 5.9. Given a variety X, the set Xsing = fp 2 X j p is singularg is the singular lous ofX. Use Exerise 5.5 to prove that Xsing is a subvariety of X. (With more work, one an show thatXsing is a proper subvariety of X. See Theorem 5.3 of [5℄.)



Introdution to Algebrai Geometry 21Loal Analyti Equivalene. When we want to say that two varieties are loally the same, wehave to be areful to speify what we mean by \loal".Suppose that we have p 2 X and q 2 Y , where X and Y are varieties. Then, in the Zariskitopology, X and Y being \loally equivalent" at p and q respetively means that there are Zariskiopen sets p 2 U � X and q 2 V � Y suh that U ' V as varieties. Sine Zariski open subsets arehuge, this notion of \loal equivalene" is not very useful.Exerise 5.10. Show that p 2 X and q 2 Y are \loally equivalent" in the above sense if and onlyif the loal rings OX;p and OY;q are isomorphi as C -algebras.In x3, we disussed the sheaf OanX of analyti funtions on X, whih is a sheaf in the lassialtopology. This allows one to de�ne an analyti (or holomorphi) map between lassial open setsin varieties. Then X and Y are analytially equivalent at p and q if there are lassial open setsp 2 U � X and q 2 V � Y suh that U ' V as analyti varieties. Here are two nie fats aboutloal analyti equivalene:� As in Exerise 5.7, X and Y are analytially equivalent at p and q if and only if there is aC -algebra isomorphism between the loal rings OanX;p and OanY;q.� p 2 X is smooth if and only if it is analytially equivalent to 0 2 C n.Finite Quotients of AÆne Spae. Let G be a �nite subgroup of GL(n; C ). Then G ats on C n,and the quotient C n=G is the set of G-orbits. By Chapter 7 of [3℄, we an turn this set into anaÆne variety as follows.Proposition 5.5. Given a �nite subgroup G � GL(n; C ), let C [x1; : : : ; xn℄G � C [x1; : : : ; xn℄ bethe subring of invariant polynomials. There is a natural bijetion C n=G ' Spe(C [x1; : : : ; xn℄G).Understanding the struture of C [x1; : : : ; xn℄G is one of the goals of invariant theory . In someases, the quotient C n=G is still smooth.Exerise 5.11. Let Cm 2 GL(n; C ) be the matrix with e2�i=m; 1; : : : ; 1 on the main diagonaland 0's elsewhere, and let G = fCim j 0 � i � m � 1g. Use the map C n ! C n given by(a1; a2; : : : ; an) 7! (am1 ; a2; : : : ; an) to prove that C n=G ' C n. Also, what is C [x1; : : : ; xn℄G?Exerise 5.12. Let the symmetri group Sn be embedded in GL(n; C ) as the set of permutationmatries. Then Sn ats on C n by permuting oordinates. Prove that C n=Sn ' C n. Hint: Elemen-tary symmetri polynomials.A matrix in GL(n; C ) is a omplex reetion if it is onjugate to the matrix Cm of Exerise 5.7,andG � GL(n; C ) is a omplex rotation group if it is generated by omplex rotations. The Shephard-Todd-Chevalley theorem says that C n=G ' C n if and only if G is a omplex reetion group. Aproof an be found in [10, Setion 2.4℄.Exerise 5.13. Show that the n� n permutation matries form a omplex reetion group.Exerise 5.14. Let G � GL(n; C ) be a �nite subgroup and let H be subgroup of G generated bythe elements of G whih are omplex reetions. Prove that H is normal in G.We next de�ne a speial type of �nite matrix group.



22 David A. CoxDe�nition 5.6. A �nite subgroup G � GL(n; C ) is small if it ontains no omplex reetionsother than the identity.Small subgroups were introdued by Prill in order to obtain a one-to-one orrespondenebetween groups and quotients. More preisely, we have the following results, proved in [7℄:� If G � GL(n; C ) is �nite, then in a lassial neighborhood of the origin, C n=G is analytiallyequivalent to the quotient of C n by a small subgroup. (The rough idea is that if H is thesubgroup of Exeriise 5.14, then C n=H ' C n by the Shephard-Todd-Chevalley Theorem, andin a lassial neighborhood of the origin, the ation of G=H on C n is analytially equivalentto the linear ation of a small subgroup.)� If G1 and G2 are small subgroups of GL(n; C ) whih give analytially equivalent singularities,then G1 and G2 are onjugate in GL(n; C ).Quasimooth Varieties. We now de�ne a type of singularity whih is lose to being smooth.De�nition 5.7. A point p of a variety X is a �nite quotient singularity if there is a smallsubgroup G � GL(n; C ) suh that p 2 X is analytially equivalent to 0 2 C n=G. Then X isquasismooth or has �nite quotient singularities or is Q -smooth if every point of p is a �nitequotient singularity.Note that the de�nition of �nite quotient singularity allows G to be the trivial subgroup ofGL(n; C ). It follows that any smooth variety is quasismooth. Here is an example to show that theonverse is not true.Exerise 5.15. Let V = V(xz � y2) � C 3.a. Show that the origin is the unique singular point of V .b. Let G = f�Ig � GL(2; C ). If we think of C 2 as Spe(C [a; b℄), then show that C [a; b℄G =C [a2; ab; b2℄.. Show that C [a2; ab; b2℄ ' C [x; y; z℄=hxz � y2i, and onlude that C 2=G ' V .For the surfae V � C 3 of this exerise, 0 2 V is not smooth by part a and is a �nite quotientsingularity by part . Sine all other points of V are smooth, we see that V is quasismooth but notsmooth.We an generalize Exerise 5.15 as follows.Proposition 5.8. Let G � C n be a small subgroup. Then C n=G is quasismooth.Proof. The de�nition of quasismooth guarantees that 0 2 C n=G is a �nite quotient singularity.But what about the other points of C n=G? Given v 2 C n, let Gv = fg 2 G j g � v = vg be itsisotropy subgroup. We will show that v 2 C n=G is analytially equivalent to 0 2 C n=Gv .First observe that w 7! w+ v is equivariant with respet to the ation of Gv , as is w 7! w� v.This gives an isomorphism of varieties C n=Gv ! C n=Gv whih takes 0 to v. Thus 0 2 C n=Gv isanalytially equivalent to 0 2 C n=Gv .Hene we need only show that v 2 C n=Gv is analytially equivalent to v 2 C n=G. Letfgig be left oset representatives for G=Gv . Then C n=G is obtained from C n=Gv by identifyingw 2 C n=Gv with gi �w for all i. Sine the points gi � v are distint in C n=Gv , we an �nd a lassialneighborhood U of v 2 C n=Gv suh that the neighborhoods gi �U are disjoint. The gi at on C n=Gvas isomorphisms of varieties, whih implies that v 2 U � C n=Gv is analytially equivalent to aneighborhood of v 2 C n=G. This gives the desired analyti equivalene.Exerise 5.16. Prove that a artesian produt of quasismooth varieties is quasismooth.



Introdution to Algebrai Geometry 23x6. The Loal Ring of an Irreduible HypersurfaeLet X be an irreduible variety with funtion �eld C (X). A subvariety Y � X is a hypersurfaeif every irreduible omponent of Y has odimension 1 in X.The Loal Ring. Let Y � X be an irreduible hypersurfae. Then onsider the setOX;Y = ff 2 C (X) j f is de�ned on a nonempty Zariski open subset of Y g:To understand this, reall that f 2 C (X) means that there is a nonempty Zariski open Y � X andf : U ! C is a morphism. Then f 2 OX;Y when we an �nd suh a U satisfying U \ Y 6= 0.Exerise 6.1. Prove that OX;Y is a loal ring and that the maximal ideal onsists of thosef 2 OX;Y whih vanish on Y .Exerise 6.2. Let Y = V(x) � C 2.a. Prove that OC 2;Y = nP (x; y)Q(x; y) j P (x; y); Q(x; y) 2 C [x; y℄; Q(0; y) 6= 0o:b. Given f 2 C (x; y), prove that f = xmg, where m 2 Z and g 2 OC 2;Y is a unit. Hint: Writef = P=Q, where Q(0; y) 6= 0. Explain why P = xkP 0 and Q = xlQ0, where P (0; y) and Q(0; y)are nonzero.. Prove that every nonzero ideal of OC 2;Y is of the form hxmi for some m � 0.Given f 2 C (x; y), Exerise 6.2 tells us that f = xmg for m 2 Z and g a unit in OC 2;Y . Weall m the order of vanishing of f on Y = V(x) � C 2 and denote it by ordY (f).Disrete Valuation Rings. The ruial observation is that Exerise 6.2 generalizes to any normalvariety. Let R be an integral domain with �eld of frations K, and set K� = K � f0g. Then R isa disrete valuation ring if there is a surjetive funtionordR : K� ! Zsuh that every for a; b 2 K�, we have:� ordR(ab) = ordR(a) + ordR(b).� ordR(a+ b) � min(ordR(a); ordR(b)) provided a+ b 6= 0.� R = fa 2 K� j ordR(a) � 0g [ f0g.We say that ordR is a valuation on K and that R is its valuation ring .Exerise 6.3. Let R be a disrete valuation ring.a, Prove that R is a loal ring with m = fa 2 R j ordR(a) > 0g as maximal ideal.b. Let a 2 R satisfy ordR(a) = 1 (a exists beause ordR is onto). Prove that m = hai.. Let a be as in part b. Prove that any nonzero ideal of R is of the form hami for some m � 0.Exerise 6.4. Prove that a disrete valuation ring is an integrally losed one-dimensional Noethe-rian loal ring. (A ring R is Noetherian if every ideal of R is �nitely generated, i.e., if the HilbertBasis Theorem holds for R.)Here are two lassi examples of disrete valuation rings.



24 David A. CoxExerise 6.5. Let p be prime. Prove that Z(p) = fa=b j a; b 2 Z; gd(p; b) = 1g is a disretevaluation ring. This gives the p-adi valuation, denoted ordp.Exerise 6.6. Let C ffzgg the ring of omplex power series with positive radius of onvergene.Prove that C ffzgg is a disrete valuation ring and that the valuation gives the order of vanishingof a nonzero element of C ffzgg.For us, the main result we need is as follows.Theorem 6.1. Let Y be an irreduible hypersurfae in a normal variety X. Then OX;Y is adisrete valuation ring.Proof. The argument requires substantial amounts of ommutative algebra. We will omit thedetails and just sketh the ideas involved. One begins with the following observations:� OX;Y is integrally losed sine the loalization of a integrally losed domain is integrally losed.� OX;Y has dimension 1 as a ring sine Y having odimension 1 in X.� OX;Y is Noetherian sine the loalization of a Noetherian ring is Noetherian.Thus OX;Y is a integrally losed one-dimensional Noetherian loal ring. A lassi result states thatany suh ring is a disrete valuation ring (and onversely, as you showed in Exerise 6.4). Theommutative algebra used here an be found in [1℄, espeially Chapter 9.In the situation of Theorem 6.1, the orresponding valuation is writtenordY : C (X)� ! Z:Given f 2 C (X)�, we say that f vanishes to order m along Y if m = ordY (f) > 0 and has a poleof order m on Y if m = �ordY (f) > 0.x7. Weil Divisors on Normal VarietiesWeil Divisors. A Weil divisor on a normal variety X is a �nite formal sumD = sXi=1 aiDiwhere the Di are distint irreduible hypersurfaes of X and ai 2 Z. The set of all Weil divisors isa group under addition and is denoted WDiv(X):We say that D =Psi=1 aiDi is e�etive if ai � 0 for all i, and we write this asD � 0:Note that any Weil divisor an be written uniquely as the di�erene of two e�etive Weil divisors.The Divisor of a Rational Funtion. Given f 2 C (X), we an de�ne ordY (f) for every irre-duible hypersurfae Y � X. This gives a Weil divisor as follows.



Introdution to Algebrai Geometry 25Proposition 7.1. Let X be normal and f 2 C (X) be nonzero. Then there are at most �nitelymany hypersuraes Y � X suh that ordY (f) 6= 0. Thus we an de�ne the Weil divisordiv(f) =PY ordY (f)Y:Proof. Let U � C be a Zariski open where f : U ! C is a nonzero morphism. Then U 0 =U�f�1(0) is also Zariski open in X. If Y � X is an irreduible hypersurfae with Y \U 0 6= ;, thenordY (f) = 0 sine f is de�ned but nonvanishing on Y \U 0. Thus ordY (f) 6= 0 implies Y � X�U 0.Sine X � U 0 is a proper subvariety of X and Y has odimension 1, it follows that Y must bean irreduible omponent of X � U 0. Then we are done sine X � U 0 has at most �nitely manyirreduible omponents.We sometimes write div(f) = div0(f)� div1(f), wherediv0(f) = XordY (f)>0 ordY (f)Ydiv1(f) = XordY (f)<0�ordY (f)Y:We all div0(f) (resp. div1(f)) the divisor of zeros of f (resp. the divisor of poles of f). Note thatthese are e�etive divisors.Exerise 7.1. Explain why div(fg) = div(f) + div(g) and div(1=f) = �div(f) for f; g 2 C (X)�.Exerise 7.2. Let f 2 C [t℄ be a polynomial of degree n, and write f = (x� a1)m1 � � � (x� ar)mr ,where a1; : : : ; ar 2 C are distint.a. When X = C , show that div(f) =Pri=1mi faig.b. When X = P1 = C [ f1g, show that div(f) =Pri=1mi faig � nf1g.Finally, we need to know when the divisor of a rational funtion vanishes.Proposition 7.2. Let X be a normal variety and let f 2 C (X)�. Then div(f) � 0 if and only iff : X ! C is a morphism, i.e., f 2 OX(X).Proof. If f : X ! C is a morphism, then f 2 OX;Y for every Y , whih in turn implies ordY (f) � 0.Hene div(f) � 0. Going the other way, suppose that div(f) � 0. Then(7:1) f 2 TYOX;Y ;where the intersetion is over all irreduible hypersurfaes of X. Hene f is de�ned on a nonemptyZariski open subset of every irreduible hypersurfae. It follows that f is de�ned outside of asubvariety of odimension at least 2. Sine X is normal, a standard result in ommutative algebraimplies that f is de�ned everywhere (see Exerise 7.3 below).Exerise 7.3. Let X = Spe(R), where R is integrally losed. Let K be the fration �eld of Rand suppose that f 2 K has div(f) = 0.a. Show that (7.1) implies that f 2 TpRp, where:� The intersetion is over all prime ideals p � R suh that V(p) has odimension 1 in X(these are alled prime ideal of height 1, written ht(p) = 1).� Rp is the loalization of R at the multipliative subset R � p (in Exerise 4.9 of x4, thiswas written RR�p).



26 David A. Coxb. A theorem in ommutative algebra states that R = Tht(p)=1Rp whenever R is Noetherian andintegrally losed. A proof an be found in [6, x12℄. Explain how this ompletes the proof ofProposition 7.2.While the proof of Proposition 7.2 uses a lot of ommutative algebra, there is also some nieintuition oming from several omplex variables. Suppose that U � C 2 is a lassial neighborhoodof the origin and that f is holomorphi on U � f(0; 0)g. Then Hartogs' Lemma asserts that fextends automatially to a holomorphi funtion on U . This applies more generally as follows: ifX is a normal analyti spae and f is homomorphi on X � Y , where Y has odimension at least2, then f extends to a holomorphi funtion on X.For a onneted omplete variety X, we learned in Theorem 4.6 of x4 that the only morphismsX ! C are onstant. This gives the following orollary of Proposition 7.2.Corollary 7.3. Let X be a omplete normal variety and let f 2 C (X)�. Then div(f) � 0 if andonly if f is onstant.Sine div(1=f) = �div(f) by Exerise 7.1, we see that div(f) = 0 if and only if div(f) � 0 anddiv(1=f) � 0. Hene we get another orollary of Proposition 7.2.Corollary 7.4. Let X be a normal variety and let f 2 C (X)�. Then div(f) = 0 if and only iff : X ! C � is a morphism, i.e., f 2 OX(X)� (the group of invertible elements of OX(X)).Linearly Equivalent Divisors and the Divisor Class Group. As above, let X be a normalvariety. We say that two Weil divisorsD1;D2 2WDiv(X) are linearly equivalent , writtenD1 � D2,if there is f 2 C (X)� suh that div(f) = D1 �D2. Furthermore, we say that D 2 WDiv(X) is aprinipal divisor if D � 0, i.e., D = div(f) for some f 2 C (X).Exerise 7.4. Let � be de�ned as above.a. Use Exerise 2.1 to show that set of prinipal divisors is a subgroup of WDiv(X).b. Show that � is an equivalene relation on Div(X).The subgroup of prinipal divisors is denoted Div0(X) (x8 will explain this notation). Partsa and b of Exerise 7.4 are linked, of ourse, sine � is the equivalane relation oming from thesubgroup Div0(X). The quotient groupCl(X) = WDiv(X)=Div0(X)is the divisor lass group of X. It onsists of equivalene lasses of linearly equivalent divisors.Given D 2 Div(X), its divisor lass in Cl(X) is denoted [D℄.Here is an important exat sequene involving the lass group.Exerise 7.5. Let X be a normal variety. Use Corollary 7.4 to prove that there is an exatsequene 1! OX(X)� ! C (X)� !WDiv(X)! Cl(X)! 0;where the map C (X)� !WDiv(X) is f 7! div(f) and WDiv(X)! Cl(X) is D 7! [D℄.One pretty result we will need is the following. A proof an be found in Proposition 6.2 of [5,II.6℄.



Introdution to Algebrai Geometry 27Theorem 7.5. For a normal aÆne variety X = Spe(R), the lass group Cl(X) is trivial if andonly if R is a unique fatorization domain.The lass group Cl(X) is sometimes denoted An�1(X), where n = dimX. More generally, onean de�ne Chow groups for Ak(X) for any irreduible variety X.In another diretion, let OK be the ring of algebrai integers in a number �eld K. Then thesheme X = Spe(R) is normal, and Cl(X) an de�ned as above. One an show that in this ase,Cl(X) is the ideal lass group of K as de�ned in algebrai number theory.x8. Cartier Divisors on Normal VarietiesWe will give a slightly non-standard treatment of Cartier divisors whih works niely on normalvarieties.Our De�nition. Let D = Psi=1 aiDi be a Weil divisor on a normal variety X. If U � X is anonempty Zariski open subset, then the restrition of D to U is the is Weil divisorD��U = XU\Di 6=; ai U \Di:We now de�ne a speial lass of Weil divisors.De�nition 8.1. Let D be a Weil divisor on a normal variety X.a. D is loally prinipal if there is an open over fUigi2I of X suh that D��Ui is prinipal forevery i 2 I.b. D is Cartier if it is loally prinipal.A prinipal divisor is obviously loally prinipal. Thus div(f) is Cartier for all f 2 C (X)�.Exerise 8.1. Let D and E be Cartier divisors. Prove that D +E and �D are Cartier.Exerise 8.2. Let D � E be linearly equivalent Weil divisors. Prove that D is Cartier if and onlyif E is Cartier.If D is loally prinipal relative to the open over fUigi2I , then we an �nd fi 2 C (X)� suhthat D��Ui = div(fi) on Ui. We say that f(Ui; fi)gi2I is loal data for D.Exerise 8.3. Let f(Ui; fi)gi2I be loal data for a Cartier divisor D.a. Prove that fi=fj 2 OX(Ui \ Uj)� for all i; j 2 I. Hint: Use Corollary 7.4.b. Prove that D is e�etive if and only if fi 2 OX(Ui) for all i 2 I. Hint: Use Proposition 7.2.For an example of a Weil divisor whih is not Cartier, onsider the aÆne surfae X = V(xy�z2) � C 3. The x-axis Y = V(y; z) is ontained in V , so that Y is a Weil divisor on X. However,one an show that Y is not a Cartier divisor (see Example 6.11.3 in [5, II.6℄).There is one nie ase where Weil and Cartier divisors oinide.



28 David A. CoxTheorem 8.2. Let X be a normal variety suh that the loal ring OX;p is a unique fatorizationdomain for every p 2 X. Then every Weil divisor on X is Cartier.This is proved in Proposition 6.11 of [5, II.6℄). We should also mention that if X is smooth,then OX;p is a unique fatorization domain for all p. It follows that Weil and Cartier divisorsoinide on smooth varieties.The Standard De�nition. De�nition 8.1 di�ers from what one usually �nds in the literature.The more ommon de�nition starts with loal data f(Ui; fi)gi2I satisfying part a of Exerise 8.3and de�nes two loal data f(Ui; fi)gi2I , f(Vj ; gj)gj2J to be equivalent if fi=gj 2 OX(Ui \ Vj)� forall (i; j) 2 I � J . Then a Cartier divisor is an equivalane lass of loal data.There is also more sophistiated way to de�ne Cartier divisors whih avoids equivalene lasses.We have the sheaf O�X whose setions over U are the invertible elements in the ring OX(U), andwe an also regard C (X)� as a onstant sheaf on X. Then one an show that a Cartier divisor is aglobal setion of the quotient sheaf C (X)�=O�X . See [5, page 141℄ for details.The Piard Group. We denote the set of all Cartier divisors on a normal variety X byDiv(X):This is a subgroup of WDiv(X) by Exerise 8.1. Furthermore, sine every prinipal divisor isCartier, we have Div0(X) � Div(X). Then we de�ne the Piard group of X to be the quotient(8:1) Pi(X) = Div(X)=Div0(X):We will give a more sophistiated de�nition of Pi(X) in x10. (Note that (8.1) explains why thegroup of prinipal divisors is denoted Div0(X) rather than WDiv0(X).) Sine Div(X) is a subgroupof WDiv(X), we get a anonial injetionPi(X) ,! Cl(X):In analogy with Exerise 2.7, we have the following exat sequene.Exerise 8.4. Let X be a normal variety. Prove that there is an exat sequene1! OX(X)� ! C (X)� ! Div(X)! Pi(X)! 0;where the map C (X)� ! Div(X) sends f to div(f) and the map Div(X)! Pi(X) is the naturalhomomorphism.x9. The Sheaf of a Weil DivisorDe�nition and Basi Properties. Let D be a Weil divisor on a normal variety X. We will showthat D determines a sheaf OX(D) of OX-modules on X. As noted in x3, the setions of a sheaf Fover U � X an be written F(U) = �(U;F) = H0(U;F):For OX(D), we will �nd it onvenient to use the middle notation. Thus, given a Zariski open subsetU � X, we de�ne �(U;OX(D)) = ff 2 C (X)� j (div(f) +D)��U � 0g [ f0g:



Introdution to Algebrai Geometry 29Lemma 9.1. The above de�nition makes OX(D) into a sheaf of OX -modules on X.Proof. We �rst show that �(U;OX(D)) is an additive subgroup of C (X). It suÆes to prove thisfor U = X. Let D =Psi=1 aiDi. Then f 2 �(X;OX (D)) if and only if ordDi(f) � �ai for all i. Ifg 2 C (X)� also has this property, then so does f + g sineordDi(f + g) � min(ordDi(f); ordDi(g)) � �ai:Sine div(�f) = div(f), we see that �(U;OX(D)) is a subgroup of C (X).We next show that this is a module over �(X;OX) = OX(X). Given f 2 �(X;OX(D)) andg 2 �(X;OX), we know that div(f) +D � 0 and div(g) � 0. Thendiv(gf) +D = div(g) + div(f) +D � 0sine a sum of e�etive divisors is e�etive. This proves that gf 2 �(X;OX (D)) and gives thedesired module struture.Finally, we omit the proof that OX(D) is a sheaf in the Zariski topology.Exerise 9.1. The trivial Weil divisor is denoted 0. Prove that OX(0) oinides with the struturesheaf OX . Hint: Use Proposition 7.2.We next show that linearly equivalent divisors give isomorphi sheaves.Proposition 9.2. If D � E are linearly equivalent Weil divisors, then OX(D) and OX(E) areisomorphi as sheaves of OX -modules.Proof. By assumption, we have D = E + div(g) for some g 2 C (X)�. Thenf 2 �(X;OX (D)) () div(f) +D � 0() div(f) +E + div(g) � 0() div(fg) +E � 0() fg 2 �(X;OX (E)):Thus multipliation by g indues an isomorphism �(X;OX(D)) ' �(X;OX(E)) whih is learlyan isomorphism of OX(X)-modules.The same argument works over any Zariski open set U , and the isomorphisms are easily seento be ompatible with the restrition maps.Weil Divisors on an AÆne Variety. Now suppose that X = Spe(R) is aÆne and let K be the�eld of frations of R. If D is a Weil divisor on X = Spe(R), then �(X;OX(D)) is an R-submoduleof K. We �rst prove that this R-module is �nitely generated.Proposition 9.3. Let D be a Weil divisor on the normal aÆne variety X = Spe(R). Then�(X;OX(D)) is a �nitely generated R-module.Proof. We will prove the existene of h 2 R�f0g suh that h�(X;OX (D)) � R. This will implythat h�(X;OX(D)) is an ideal of R and hene has a �nite basis sine R is Noetherian. It will followimmediately that �(X;OX(D)) is �nitely generated as an R-module.Write D = Psi=1 aiDi. Sine Ssi=1Di is a proper subvariety of X, we an �nd g 2 R � f0gwhih vanishes on eah Di. Then ordDi(g) > 0 for every i, so that m ordDi(g) > ai for all i,provided m 2 Z is suÆiently large. Sine div(g) � 0, it follows that mdiv(g) �D � 0.



30 David A. CoxNow let f 2 �(X;OX(D)). This means div(f) +D � 0, and thusdiv(gmf) = mdiv(g) + div(f) = mdiv(g)�D + div(f) +D � 0sine a sum of e�etive divisors is e�etive. By Proposition 7.2, we onlude that gmf 2 OX(X) =R. Hene h = gm 2 R has the desired property.A �nitely generated R-submodule of K is alled a frational ideal . Thus Proposition 9.3 showsthat �(X;OX(D)) is a frational ideal.Exerise 9.2. Let D � 0 be an e�etive divisor on the aÆne variety X = Spe(R). Prove thatthe frational ideal �(X;OX (�D)) is an ordinary ideal (i.e., �(X;OX (�D)) � R). Hint: As usual,you will use Proposition 7.2.We next show that the R-module �(X;OX (D)) determines the entire sheaf OX(D). Reallthat if g 2 R is nonzero, the Zariski open set Xg de�ned by the nonvanishing of g is Spe(Rg),where Rg = fa=gm j a 2 R; m � 0g is the loalization of R at g.Proposition 9.4. Let D be a Weil divisor on the normal aÆne variety X = Spe(R). If g 2 R isnonzero, then(9:1) �(Xg ;OX(D)) = n fgm j f 2 �(X;OX(D)); m � 0o:Proof. Let D =Psi=1 aiDi and write f1; : : : ; sg as a disjoint union I [ J where Di \Xg 6= ; fori 2 I and Dj � V(g) for j 2 J .Suppose that h 2 �(Xg ;OX(D)), so that (div(h)+D)��Xg � 0. Thus ordDi(h) � �ai for i 2 I.Notie that there is no onstraint on ordDj (h) for j 2 J . However, we do know that g vanishes onDj for j 2 I, so that ordDj (g) > 0. Then we an pik m 2 Z suÆiently large so thatm ordDj (g) + ordDj (h) > 0 for j 2 J:Sine div(g) � 0, it follows easily that div(gmh) +D � 0 on X. Thus f = gmh 2 �(X;OX (D)),and then h = f=gm has the desired form. From here, the proposition follows easily.Sine the open sets Xg for g 2 R� f0g form a basis for the Zariski topology of X = Spe(R),Proposition 9.4 shows that the sheaf OX(D)) is uniquely determined by its global setions.Coherent Sheaves. The right-hand side of (9.1) is the loalization of �(Xg ;OX(D)) at g. Moregenerally, given any �nitely generated R-module M , one an de�ne its loalization Mg , and thenone gets a unique sheaf fM on X = Spe(R) suh that�(Xg ;fM ) =Mgfor any g 2 R� f0g. See [5, II.5℄ for details.For example, if X = Spe(R), Theorem 3.1 of x3 implies eR = OX , and if D is a Weil divisoron X, Proposition 9.4 implies fM = OX(D) for M = �(X;OX(D)).This leads to the following general de�nition. Suppose that F is a sheaf of OX -modules on anarbitrary variety X. Then F is oherent if there is an aÆne open over fUigi2I of X suh that forevery i 2 I, there is a �nitely generated OX(Ui)-module Mi suh thatF ��Ui = fMi:



Introdution to Algebrai Geometry 31The simplest example of a oherent sheaf is OX . Furthermore, the above disussion shows thatif D is a Weil divisor on a normal variety X, then OX(D) is also oherent. We will learn moreproperties of OX(D) in the next setion.x10. Invertible Sheaves and Line BundlesWe next disuss an espeially nie lass of sheaves.Invertible Sheaves. Let F be a sheaf of OX modules on a variety X. Then F is invertible if itis loally trivial, i.e., if there is a Zariski open over of fUigi2I of X suh that F��Ui ' OX ��Ui .It follows immediately that OX is invertible. A more interesting result is the following har-aterization of when the sheaves OX(D) from x4 are invertible.Theorem 10.1. Let D be a Weil divisor on a normal variety X. Then OX(D) is an invertiblesheaf if and only if D is a Cartier divisor.Proof. First suppose that D is Cartier. Sine invertibility is a loal property and D is loallyprinipal, we may assume that X = Spe(R) is aÆne and D = div(f) for f 2 K. Then D � 0, sothat by Proposition 9.2, we have OX(D) ' OX(0) = OX ;where the last equality is by Exerise 9.1.Going the other way, suppose that OX(D) is invertible. We need to prove that D is loallyprinipal. By restriting to a suitable aÆne open subset, we an assume that X = Spe(R) andthat OX ' OX(D). Taking global setions, we get an isomorphismR ' �(X;OX (D)) � K:Under this isomorphism, suppose that 1 2 R maps to 1=g 2 �(X;OX (D)). The proof of Proposition9.2 shows that if we set E = D�div(g), then g�(X;OX (D)) = �(X;OX (E)). Thus �(X;OX (E)) =R, so that OX = OX(E). If we an show that this fores E = 0, then D = div(g) will follow,proving that D is loally prinipal and hene Cartier.Thus we may assume OX = OX(E). Then 1 2 �(X;OX (E)), whih implies E � 0. IfE 6= 0, then some irreduible hyperfae Y appears in E with positive oeÆient. Observe thatany aÆne open subset of X whih meets Y has the same property. By Exerise 10.1 below, wean then assume that div(h) = Y for some h 2 R. It follows that div(1=h) + E � 0, so that1=h 2 �(X;OX(E)) = �(X;OX) = R. Sine h is also in R, this implies that h is invertible, whihmeans div(h) = 0. This ontradits div(h) = Y and proves E = 0, as desired.Exerise 10.1. Let Y be an irreduible hypersurfae in a normal variety X. The goal of thisexerise is to �nd an aÆne open subset U and a rational funtion h 2 C (X) suh that Y \ U 6= ;and div(h)��U = Y \ U .a. Explain why there is h 2 OX;Y with ordY (h) = 1.b. Show that h from part a has the following two properties:� div(h) = Y +Prj=1 bjEj , where the Ej are distint from Y .� h is de�ned on a Zariski open set U 0 suh that U 0 \ Y 6= ;.. Show that U 0 � (E1 [ � � � [Er) is nonempty and has nonempty intersetion with Y .d. Now show that the desired aÆne open subset U exists.



32 David A. CoxWe an also improve Proposition 492 as follows.Exerise 10.2. Let D and E be Cartier divisors on a normal variety X. Then D � E if and onlyif OX(D) ' OX(E) as OX-modules. Hint: Adapt the argument of Theorem 10.1.A deeper result is the following. See Proposition 6.15 of [5, II.6℄ for a proof.Theorem 10.2. Let X be a normal variety. Then every invertible sheaf on X is isomorphi toOX(D) for some Cartier divisor D on X.We remark that invertible sheaves are sometimes alled loally free sheaves of rank one.The Piard Group. Given invertible sheaves F and G on X, one easily proves that(10:1) F 
OX G and F_ = HomOX (F ;OX )are also invertible. It is also easy to show that the anonial map F 
OX F_ ! OX indues anisomorphism F 
OXF_ ' OX ;whih explains the name \invertible". These properties show that the set of isomorphism lassesof invertible sheaves on X has a natural group struture under tensor produt. We all(10:2) Pi(X) = fisomorphism lasses of invertible sheaves on Xg:the Piard group of X,Sine we already de�ned Pi(X) in (8.1) of x8, we need to explain why these de�nitions areequivalent. We begin with the following important result, whose proof we omit (see Proposition 6.13of [5, II.6℄ for a proof).Theorem 10.3. If D and E are Cartier divisors on a normal variety X, then there are anonialisomorphisms OX(D +E) ' OX(D)
OX OX(E)OX(�D) ' OX(D)_:If we ombine Theorem 10.2 and 10.3, we get a surjetive homomorphism Div(X) ! Pi(X),and Exerise 5.2 shows that the kernel is Div0(X). We onlude that for normal varieties, the twode�nitions oinide. However, the de�nition given in (10.2) is more general, sine it makes sensefor any variety X.We should also note that one an de�ne Pi(X) using sheaf ohomology. Here is the basiidea. Let X be a normal variety (for simpliity), and onsider the exat sequene of sheaves(10:3) 1! O�X ! C (X)� ! C (X)�=O�X ! 1:In x8, we mentioned that Div(X) = H0(X; C (X)�=O�X). Taking sheaf ohomology, (10.3) gives thelong exat sequene0! H0(X;O�X)! H0(X; C (X)�)! H0(X; C (X)�=O�X)! H1(X;O�X )! H1(X; C (X)�)!One an show that H1(X; C (X)�) = 0, and then the above long exat sequene redues to1! OX(X)� ! C(X)� ! Div(X)! H1(X;O�X )! 0:



Introdution to Algebrai Geometry 33Comparing this to Exerise 8.4, we onlude that H1(X;O�X ) = Pi(X). This is the sheaf-theoretide�nition of the Piard group.Rank One Reexive Sheaves. Now suppose that D is a Weil divisor on a normal variety X. IfD is not Cartier, then we know that OX(D) is not invertible. So what kind of sheaf is it?Given any sheaf F of OX -modules, we an de�ne F_ as in (10.1), and there is a anonialmap F ! F__. Then we say that F is reexive of rank one if:� There is a nonempty Zariski open set U suh that F ��U is trivial.� F is torsion-free.� The map F ! F__ is an isomorphism.Any invertible sheaf is reexive. Of more interest is the following result. A proof an be found in[2, Chapter VII℄ and [8, Appendix to x1℄.Proposition 10.4. If D is a Weil divisor on a normal variety X, then OX(D) is a reexive sheafof rank one.The dual of a reexive sheaf of rank one is again reexive of rank one, though the tensorprodut F 
OX G of reexive sheaves of rank one need not be reexive of rank one. However, thedouble dual(10:4) (F 
OX G)__is reexive of rank one. Furthermore, if D and E are Weil divisors on X, thenOX(D +E) ' (OX(D)
OXOX(E))__:One an also show that up to isomorphism, every reexive sheaf of rank one onX omes from a Weildivisor on X. It follows that the lass group Cl(X) an be regarded as the group of isomorphismlasses of rank one reexive sheaves under the produt (10.4). Details of all of this an be foundint [2, Chapter VII℄ and [8, Appendix to x1℄.In most of algebrai geometry, invertible sheaves are more important than rank one reexivesheaves. However, there are situations where rank one reexive sheaves our naturally. An exampleis given by the anonial sheaf of a Cohen-Maaulay variety X, whih is only reexive of rank one(unless the variety is Gorenstein, in whih ase the anonial sheaf is invertible). The anonialsheaf plays an important role in duality theory.Line Bundles. A line bundle over a variety X onsists of a map of varieties � : L! X suh thatX has an open over fUigi2I with the following two properties:� For eah i 2 I, here is an isomorphism fi : ��1(Ui) ' Ui � C suh that � = �1 Æ fi, where�1 : Ui � C ! Ui is projetion on the �rst fator.� For eah pair i; j 2 I, then there is gij 2 OX(Ui \ Uj)� suh that the ompositionfj Æ f�1i : (Ui \ Uj)� C ! (Ui \ Uj)� Cis given by (x; �) 7! (x; gij(x)�).Sine the gij 2 OX(Ui \ Uj)� are built from fj Æ f�1i , it follows easily that they satisfy the oyleondition(10:5) gik(x) = gij(x)gjk(x) for i; j; k 2 I x 2 Ui \ Uj \ Uk:



34 David A. CoxThe trivial line bundle is given by �1 : X � C ! X, where �1 is projetion on the �rst fator.Given x 2 X and a line bundle � : L ! X, we all Lx = ��1(x) the �ber of L over x. Ifx 2 Ui, we an use fi to de�ne an isomorphism Lx ' C . If we also have x 2 Uj , then we get adi�erent isomorphism Lx ' C , but the two are related by multipliation by gij(x). It follows thatLx has a natural struture as a 1-dimensional vetor spae, i.e., a omplex line. Sine L is theunion of the Lx, this explains the term \line bundle".The Sheaf of Setions of a Line Bundle. Let � : L ! X be a line bundle over X. If U � Xis Zariski open, then a setion of L over U is a morphism s : U ! L suh that � Æ s(x) = x for allx 2 U . Then set(10:6) �(U;L) = H0(U;L) = fall setions of L over Ug:Sine the �bers are vetor spaes, we an add setions and mutiply them by elements of OX(U).It follows that (10.6) de�nes a sheaf of OX -modules. We will denote this sheaf by OX(L).Exerise 10.3. Let �1 : X � C ! X be the trivial bundle.a. Show that a setion over U � X is desribed by s(x) = (x; f(x)), x 2 U , for a uniquef 2 OX(U).b. Show that the sheaf de�ned by (10.6) is OX .Now let L be any line bundle over X. Sine loally L looks like Ui � C , Exerise 10.3 showsthat loally, the sheaf OX(L) looks like OUi ' OX ��Ui . We have thus proved the following result.Proposition 10.5. If L is a line bundle over X, then OX(L) is an invertible sheaf.We an also reverse this proess by showing that every invertible sheaf is the sheaf of setionsof some line bundle. In the speial ase when X is normal, we an do this as follows. Supposethat L is an invertible sheaf. By Theorem 10.2, L ' OX(D) for some Cartier divisor D. Then letf(Ui; fi)gi2I be loal data for D, so that div(fi)��Ui = D��Ui for all i.With this set-up, let gij = fi=fj , and note that gij 2 OX(Ui \ Uj)� by Exerise 8.3. Further-more, it is obvious that the gij satisfy oyle ondition (10.5). We saw in x3 how we an onstrutX from the Ui by gluing Ui and Uj together along Ui \ Uj . In the same way, we an glue Ui � Cand Uj � C together by identifying(10:7) (x; �) ! (x; gij(x)�);where (x; �) 2 (Ui \ Uj)� C � Ui � C(x; gij(x)�) 2 (Ui \ Uj)� C � Uj � C :The oyle ondition (10.5) shows that thes identi�ations satisfy the ompatibility onditionsfrom the subsetion \Gluing Together AÆne Varieties" in x3. It follows that we an glue togetherthe Ui� C to get a variety L. In the same way, the projetions Ui� C ! Ui path together to givea morphism � : L! X. We will omit the proof of the following proposition.Proposition 10.6. � : L ! X is a line bundle whose sheaf of setions is isomorphi to theinvertible sheaf L ' OX(D) we began with.It follows that we have three losely related objets: Cartier divisors, invertible sheaves, andline bundles. In algebrai geometry, it is ustomary (though slightly inaurate) to use the terms\invertible sheaf" and \line bundle" interhangeably.



Introdution to Algebrai Geometry 35The Zero Divisor of a Setion. Suppose that the sheaf of setions of a line bundle L is theinvertible sheaf OX(D), where D is a Cartier divisor. Then we an think of a global setion intwo very di�erent ways: as a setion s : X ! L suh that � Æ s = 1X , and as a rational funtionf 2 C (X)� suh that div(f) +D � 0. How are these related?The easiest way to see the link between these notions of \global setion" is to de�ne the zerodivisor of a nonzero setion s : X ! L. Given suh an s, onsider an open overing fUigi2I whihtrivializes the bundle. Then, using the restrition of s to Ui, we get the omposition(10:8) si : Ui ! ��1(Ui) ' Ui � C ! C :This is a morphism, so that si 2 OX(Ui). Furthermore, one heks that si = gijsj on Ui \ Uj .Sine gij 2 OX(Ui \ Uj)�, It follows easily that the divisors div(si) on Ui path together to givea divisor on X. This divisor is learly loally prinipal (it equals div(si) on Ui). Thus we get aCartier divisor div0(s) 2 Div(X):Furthermore, div0(s) � 0 sine eah si 2 OX(Ui). This relates to the global setions of OX(D) asfollows.Theorem 10.7. Let L be the line bundle orresponding to the invertible sheafOX(D), and supposethat s 2 �(X;L)� f0g orresponds to f 2 �(X;OX (D))� f0g. Thendiv0(s) = div(f) +D:Proof. First note that both sides of the equation are e�etive divisors. Given f 2 C (X)� withdiv(f) +D � 0, we an de�ne a setion s of L as follows. We onstruted L using the loal dataf(Ui; fi)gi2I for D. Then D��Ui = div(fi)��Ui , so thatdiv(ffi)��Ui = (div(f) +D)��Ui � 0:If we set si = ffi, then Proposition 7.2 shows that si 2 OX(Ui). Furthermore, the onstrutionof L shows that the setions Ui ! Ui � C de�ned by x 7! (x; si(x)) path to give a setion s of Lover X. (This is part of the proof of Proposition 10.6.) Sine div0(s) is onstruted by pathingtogether the divisors div(si) = div(ffi), it follows easily that div0(s) = div(f) +D, as laimed.The divisor div0(s) tells us where the setion s vanishes. However, being a divisor, div0(s)reords more than just the hypersurfaes Y � X where s is zero|the oeÆient of Y in div0(s)also tells us to what order s vanishes on Y .Exerise 10.4. Let L be a line bundle over X.a. Show that the divisors div0(s) for s 2 �(X;L)� f0g are all linearly equivalent.b. Let D be an e�etive Cartier divisor on X whih is linearly equivalent to div0(s) for somes 2 �(X;L)� f0g. Prove that D = div0(t) for some t 2 �(X;L)Given a line bundle L over X, the set of e�etive divisorsjLj = fdiv0(s) j s 2 �(X;L)� f0ggis alled a omplete linear system. This terminology is justi�ed by part b of the Exerise 10.4.Exerise 10.5. If L is a line bundle on a omplete variety X. Prove that jLj an be identi�edwith the projetive spae P(�(X;L)). Hint: Exerise 3.4 will be useful.



36 David A. CoxFinally, we disuss the \quotient" of two setions of a line bundle. If s; t are nonzero setionsof L, then for eah x 2 X, s(x) and t(x) are elements of the one-dimensional vetor spae Lx. Thisspae doesn't have a anonial basis, so we an't regard s(x) and t(x) as numbers. But if t(x) 6= 0,then the \quotient" s(x)=t(x) makes sense: it the unique number � suh that s(x) = �t(x). Thissuggests that s=t should be a rational funtion on X.Exerise 10.6. Let s; t be nonzero setions of L over X, and let fUigi2I be an open over of Xwhih trivializes L.a. By working on Ui, show that s=t = si=ti, where si is as in (10.8) and ti is de�ned similarly.b. Explain why si=ti = sj=tj as rational funtions on Ui \ Uj .Part b gives a well-de�ned element of C (X)� whih we denote s=t.Exerise 10.7. Suppose that L is the line bundle built from the Cartier divisor D on X. Let s; tbe nonzero setions of L over X whih orrespond to f; g 2 �(X;OX (D)). Prove that the rationalfuntion s=t of Exerise 10.6 is given by f=g.Invertible Sheaves on Projetive Spae. Let x0; : : : ; xn be homogeneous oordinates on Pn.Reall from x2 that Pn is overed by the open sets Ui = Pn �V(xi) and thatC (Pn) = nfg j f; g 2 C [x0; : : : ; xn℄ homogeneous of equal degree, g 6= 0o:Now let H = V(x0) � Pn. This is learly a divisor, and is Cartier sine Pn is smooth. Ourgoal is to determine the global setions of OPn(dH) for d > 0.Exerise 10.8. Show that f(Ui; xd0=xdi )g0�i�n is loal data for dH.We an now desribe the global setions of OPn(dH).Proposition 10.8. If d > 0, then the global setions of OPn(dH) are�(Pn;OPn(dH)) = n fxd0 j f is homogeneous of degree do:Proof. Let f=g 2 �(Pn;OPn(dH)), where f and g are relatively prime. Then div(f=g) + dH � 0.If we restrit to Ui, then this beomes (div(f=g) + div(xd0=xdi ))��Ui � 0. Equivalently,div(f=g � xd0=xdi )��Ui � 0;so that f=g � xd0=xdi 2 OPn(Ui). Can an think of Ui as a opy of C n with variables xjxi for j 6= i. Iff; g have degree m, then we an write f=g � xd0=xdi as(10:9) f�x0xi ; : : : ; xnxi �g�x0xi ; : : : ; xnxi � � �x0xi �d:For eah i, this must be a polynomial in xjxi for j 6= i. When i = 0, the seond fator in (5.9) is 1,whih means that the denominator of the �rst fator must be onstant sine f and g are relativelyprime. Multiplying f and g by suitable onstants, we an assume g�1; x1x0 ; : : : ; xnx0 � = 1, and theng = xm0 follows sine g is homogeneous of degree m.
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