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Update #1: The F5 Algorithm

In 2002, Faugére proposed his F5 algorithm for computing Gröbner
bases. Its termination was proved just recently!

S. Pan, Y. Hu and B. Wang, The Termination of Algorithms for
Computing Gröbner Bases, arXiv:math.AC/1202.3524.

The F5 algorithm is generally believed as one of the fastest algorithms
for computing Gröbner bases. However, its termination problem is still
unclear. Recently, an algorithm GVW and its variant GVWHS have
been proposed, and their efficiency are comparable to the F5
algorithm. . . . Taking into account this situation, we prove the
termination and correctness of the F5B algorithm. And we notice that
the original F5 algorithm slightly differs from the F5B algorithm in the
insertion strategy on which the F5-rewritten criterion is based. . . .
Therefore, we have a positive answer to the long standing problem of
proving the termination of the original F5 algorithm.
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Update #1, Continued

V. Galkin, Termination of Original F5, arXiv:math.AC/1203.2402.

The original F5 algorithm described in Faugére’s paper is formulated
for any homogeneous polynomial set input. The correctness of output
is shown for any input that terminates the algorithm, but the termination
itself is proved only for the case of input being regular polynomial
sequence. This article shows that algorithm correctly terminates for
any homogeneous input without any reference to regularity.

C. Eder, Sweetening the sour taste of inhomogeneous signature-based
Groebner basis computations, arXiv:math.AC/1203.6186.

In this paper we want to give an insight into the rather unknown
behaviour of signature-based Groebner basis algorithms, like F5,
G2V, or GVW, for inhomogeneous input.
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Update #2: One-Point Algebraic Geometry Codes

O. Geil, R. Matsumoto and D. Ruano, List decoding algorithms
based on Gröbner bases for general one-point AG codes,
arXiv:cs.IT/1201.6248.

We generalize the list decoding algorithm for Hermitian codes
proposed by Lee and O’Sullivan based on Gröbner bases to general
one-point AG codes, under an assumption weaker than one used by
Beelen and Brander. By using the same principle, we also generalize
the unique decoding algorithm for one-point AG codes over the
Miura-Kamiya Cab curves proposed by Lee, Bras-Amorós and
O’Sullivan to general one-point AG codes, without any assumption.
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Update #3: Cost Minimization

F. Castro, J. Gago, I. Hartillo, J. Puerto and J. M. Ucha, Exact cost
minimization of a series-parallel system, arXiv:math.OC/1203.3307.

The redundancy allocation problem is formulated minimizing the
design cost for a series-parallel system with multiple component
choices whereas ensuring a given system reliability level. The
obtained model is a nonlinear integer programming problem with a non
linear, non separable constraint. We propose an algebraic method,
based on Gröbner bases, to obtain the exact solution of the problem.
In addition, we provide a closed form for the required Gröbner bases,
avoiding the bottleneck associated with the computation, and
promising computational results.
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Update #4: May 2012

D. R. Grayson, A. Seceleanu and M. E. Stillman, Computations in intersection
rings of flag bundles, arXiv:math.AG/1205.4190.

Intersection rings of flag varieties are generated by Chern classes of the
tautological bundles modulo relations coming from multiplicativity of total
Chern classes. We describe the Groebner bases of the ideals of relations.

V. Galkin, Simple signature-based Groebner basis algorithm,
arXiv:math.AC/1205.6050

This paper presents an algorithm for computing Groebner bases based upon
labeled polynomials and ideas from the algorithm F5.

D. J. Wilson, R. J. Bradford and J. H. Davenport, Speeding up Cylindrical
Algebraic Decomposition by Gröbner bases, arXiv:cs.SC/1205.6285.

Gröbner Bases and Cylindrical Algebraic Decomposition are generally
thought of as two, rather different, methods of looking at systems of equations
and, in the case of Cylindrical Algebraic Decomposition, inequalities.
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Update Summary

The papers cited on the three updates were all posted on the arXiv in
January, February, March and May of 2012.

However, they appeared in very different places in the arXiv:

The F5 papers: math.AC – Commutative Algebra

The coding theory paper: cs.IT – Information Theory

The cost minimization paper: math.OC – Optimization and Control

May 2012: math.AG – Algebraic Geometry
cs.SC – Symbolic Computation

This shows:
The continued activity in Gröbner bases.

The wide range of areas of mathematics and computer science
involved.
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Snapshot #1: Graph Colorings

Let G = (V ,E) be a graph with vertices V = {1, . . . ,n}.

Definition
A k-coloring of G is a function from V to a set of k colors such that
adjacent vertices have distinct colors.

Example

vertices = 81 squares
edges = links between:
• squares in same column
• squares in same row
• squares in same 3× 3

Colors = {1,2, . . . ,9}

Goal: Extend the partial
coloring to a full coloring.
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Graph Ideal

Definition
The k-coloring ideal of G is the ideal IG,k ⊆ C[xi | i ∈ V ] generated by:

for all i ∈ V : xk
i − 1

for all ij ∈ E : xk−1
i + xk−2

i xj + · · ·+ xix
k−2
j + xk−1

j .

Lemma
V(IG,k ) ⊆ Cn consists of all k-colorings of G for the set of colors
consisting of the k th roots of unity

µn = {1, ζk , ζ
2
k , . . . , ζ

k−1
k }, ζk = e2πi/k .

Proof.
(xk

i − 1)− (xk
j − 1)

xi − xj
= xk−1

i + xk−2
i xj + · · ·+ xk−1

j .
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The Existence of Colorings

Two Observations
G has a k-coloring ⇐⇒ V(IG,k ) 6= ∅.

Hence there is a Gröbner basis criterion for the existence of a
k-coloring.

3-Colorings
For 3-colorings, the ideal IG,3 is generated by

for all i ∈ V : x3
i − 1

for all ij ∈ E : x2
i + xixj + x2

j .

These equations can be hard to solve!

Theorem
3-colorability is NP-complete.
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Example

This example of a graph
with a 3-coloring is due
to Chao and Chen (1993).

Hillar and Windfeldt (2008)
compute the reduced Gröbner
basis of the graph ideal IG,3
for lex with x1 > · · · > x12.

1 2

34

5 6

7

8

910

11

12

The reduced Gröbner basis is:

{x3
12 − 1, x7 − x12, x4 − x12, x3 − x12,

x2
11 + x11x12 + x2

12, x9 − x11, x6 − x11, x2 − x11,

x10 + x11 + x12, x8 + x11 + x12, x5 + x11 + x12,

x1 + x11 + x12}.

Note x8 − x10, x5 − x10, x1 − x10 ∈ IG,3.
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Uniquely k -Colorable Graphs

The Chao/Chen graph has essentially only one 3-coloring.

Definition
A graph G is uniquely k-colorable if it has a unique k-coloring up the
permutation of the colors.

Hillar and Windfeldt show that unique k-colorability is easy to detect
using Gröbner bases.

We start with a k-coloring of G that uses all k colors. Assume the k
colors occur among the last k vertices. Then:

Use variables x1, . . . , xn−k , y1, . . . , yk with lex order

x1 > · · · > xn−k > y1 > · · · > yk .

Use these variables to label the vertices of G.
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Some Interesting Polynomials

Consider the following polynomials:

yk
k − 1

hj(yj , . . . , yk ) =
∑

αj+···+αk=j y
αj

j · · · y
αk
k , j = 1, . . . , k − 1

xi − yj , color(xi) = color(yj), j ≥ 2

xi + y2 + · · ·+ yk , color(xi) = color(y1).

In this notation, the Gröbner basis given earlier is:

{y3
3 − 1,

h2(y2, y3) = y2
2 + y2y3 + y2

3 , h1(y1, y2, y3) = y1 + y2 + y3,

x7 − y3, x4 − y3, x3 − y3, x9 − y2, x6 − y2, x2 − y2,

x8 + y2 + y3, x5 + y2 + y3, x1 + y2 + y3}.
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A Theorem

Summary:

G has vertices x1, . . . , xn−k , y1, . . . , yk .

G has a k-coloring where y1, . . . , yk get all the colors.

C[x,y] has lex with x1 > · · · > xn−k > y1 > · · · > yk .

Using this data, we create:

The coloring ideal IG,k ⊆ C[x,y].

The n polynomials g1, . . . ,gn given by
yk

k − 1, hj(yj , . . . , yk ), xi − yj , xi + y2 + · · ·+ yk ,

Theorem (Hillar and Windfeldt)
The following are equivalent:

G is uniquely k-colorable.

g1, . . . ,gn ∈ IG,k .

{g1, . . . ,gn} is the reduced Gröbner basis for IG,k .
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A Final Amusement

To solve this sudoku, use:

• 81 variables xij , 1 ≤ i , j ≤ 9.
• Relabel the 9 variables for

red squares as y1, . . . , y9.
• The graph ideal IG,9.
• The 9 polynomials y9

9 − 1,
h8(y8, y9),h7(y7, y8, y9),
h6(y6, y7, y8, y9), . . . ,
h1(y1, . . . , y9) = y1 + · · ·+ y9.
• The 16 polynomials x31 − y7,

x33 − y6, x37 − y2, . . .

3 5

1 2 9

8

7

4

6

2

3

9

5

13

4

3

3

2

6

7 6

5

4

1

Assuming a unique solution, the Gröbner basis of the ideal generated
by these polynomials will contain x11 − yi , etc. This will tell us how to
fill in the blank squares!
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Comments and References

This is a terrible way to solve a 9× 9 sudoku. Doug Leonard has
been able to implement this in Magma, but only by working over
the finite field F11 and limiting interreductions to generators of
degree at most 4.

On the other hand, doing the 4× 4 sudoku this way makes an
excellent student project.

Reference
C. Hillar, T. Windfeldt, Algebraic characterization of uniquely
vertex colorable graphs, J. Comb. Th., Ser. B 98 (2008), 400–414.
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On the other hand, doing the 4× 4 sudoku this way makes an
excellent student project.

Reference
C. Hillar, T. Windfeldt, Algebraic characterization of uniquely
vertex colorable graphs, J. Comb. Th., Ser. B 98 (2008), 400–414.
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Snapshot #2: Join-Meet Ideals

Graphs are not the only combinatorial objects that give interesting
ideals. Here we explore ideals associated to finite lattices.

Definition
A lattice is a partially ordered set L such that every a,b ∈ L have a
sup a ∨ b and an inf a ∧ b.

All lattices in this talk will be assumed to be finite.

Definition
A lattice L is:

distributive if a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c) for all a,b, c ∈ L.

modular if a ≤ b implies a ∨ (c ∧ b) = (a ∨ c) ∧ b for all c ∈ L.

Every distributive lattice is modular; the converse is not true.
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Join-Meet Ideals

Definition
Let L be a finite lattice and let k [L] be the polynomial rings whose
variables are the elements of L. Then the join-meet ideal of L is

IL = 〈a b − (a ∨ b)(a ∧ b) | a,b ∈ L〉 ⊆ k [L].

A natural question concerns how properties of the lattice L relate to
properties of the ideal IL. Here is a nice example.

Theorem (Hibi)
The join-meet ideal IL is prime if and only if the lattice L is distributive.

We now discuss some of the interesting relations between Gröbner
bases and join-meet ideals.
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Gröbner Bases and Distributive Lattices

We first give a Gröbner basis criterion for a lattice to be distributive.

Theorem
Let L be a lattice. The following are equivalent:

1 L is distributive.
2 IL is prime.
3 {a b − (a ∨ b)(a ∧ b) | a,b ∈ L incomparable} is a

Gröbner basis for IL for any monomial order satisfying
a b > (a ∨ b)(a ∧ b) when a,b are incomparable.

(1)⇔ (2)⇒ (3) was proved by Hibi in 1987.

(3)⇒ (1) was noted by Qureshi in 2012.
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Modular Non-Distributive Lattices

We next study IL for some modular non-distributive lattices L.
Here, Gröbner bases play a key role in the proof.

We begin with two closely related lattices. The one on the left is
distributive; the one on the right is modular but not distributive.

x
1

x
2

xk

xk +1

xn -1

xn

y
1

y
2

yk

yk +1

yn -1

yn

x
1

x
2

xk

xk +1

xn -1

xn

y
1

y
2

yk

yk +1

yn -1

yn

z

The lattice on the right will be denoted Lk .
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Some Radical Modular Lattices

Theorem (Ene and Hibi)
The ideal ILk

is radical.
xk

xk +1
yk

yk +1

z

Proof.
Step 1: Write down a Gröbner basis of I = ILk

. The basis includes
y2

k z − yk z2 and xk+1z − yk z.

Step 2: Prove that I = 〈I, xk+1 − yk 〉 ∩ 〈I, z〉 using Gröbner bases.

Step 3: Prove that 〈I, xk+1 − yk 〉 and 〈I, z〉 have squarefree initial
ideals.

Since ideals with squarefree initial ideals are radical, the theorem
follows from Steps 2 and 3.

Note that the initial ideal of ILk
is not squarefree.

David A. Cox (Amherst College) Gröbner Bases EACA 2012, Alcalá 22 / 42



Some Radical Modular Lattices

Theorem (Ene and Hibi)
The ideal ILk

is radical.
xk

xk +1
yk

yk +1

z

Proof.
Step 1: Write down a Gröbner basis of I = ILk

. The basis includes
y2

k z − yk z2 and xk+1z − yk z.

Step 2: Prove that I = 〈I, xk+1 − yk 〉 ∩ 〈I, z〉 using Gröbner bases.

Step 3: Prove that 〈I, xk+1 − yk 〉 and 〈I, z〉 have squarefree initial
ideals.

Since ideals with squarefree initial ideals are radical, the theorem
follows from Steps 2 and 3.

Note that the initial ideal of ILk
is not squarefree.

David A. Cox (Amherst College) Gröbner Bases EACA 2012, Alcalá 22 / 42



Some Radical Modular Lattices

Theorem (Ene and Hibi)
The ideal ILk

is radical.
xk

xk +1
yk

yk +1

z

Proof.
Step 1: Write down a Gröbner basis of I = ILk

. The basis includes
y2

k z − yk z2 and xk+1z − yk z.

Step 2: Prove that I = 〈I, xk+1 − yk 〉 ∩ 〈I, z〉 using Gröbner bases.

Step 3: Prove that 〈I, xk+1 − yk 〉 and 〈I, z〉 have squarefree initial
ideals.

Since ideals with squarefree initial ideals are radical, the theorem
follows from Steps 2 and 3.

Note that the initial ideal of ILk
is not squarefree.

David A. Cox (Amherst College) Gröbner Bases EACA 2012, Alcalá 22 / 42



Some Radical Modular Lattices

Theorem (Ene and Hibi)
The ideal ILk

is radical.
xk

xk +1
yk

yk +1

z

Proof.
Step 1: Write down a Gröbner basis of I = ILk

. The basis includes
y2

k z − yk z2 and xk+1z − yk z.

Step 2: Prove that I = 〈I, xk+1 − yk 〉 ∩ 〈I, z〉 using Gröbner bases.

Step 3: Prove that 〈I, xk+1 − yk 〉 and 〈I, z〉 have squarefree initial
ideals.

Since ideals with squarefree initial ideals are radical, the theorem
follows from Steps 2 and 3.

Note that the initial ideal of ILk
is not squarefree.

David A. Cox (Amherst College) Gröbner Bases EACA 2012, Alcalá 22 / 42



Some Radical Modular Lattices

Theorem (Ene and Hibi)
The ideal ILk

is radical.
xk

xk +1
yk

yk +1

z

Proof.
Step 1: Write down a Gröbner basis of I = ILk

. The basis includes
y2

k z − yk z2 and xk+1z − yk z.

Step 2: Prove that I = 〈I, xk+1 − yk 〉 ∩ 〈I, z〉 using Gröbner bases.

Step 3: Prove that 〈I, xk+1 − yk 〉 and 〈I, z〉 have squarefree initial
ideals.

Since ideals with squarefree initial ideals are radical, the theorem
follows from Steps 2 and 3.

Note that the initial ideal of ILk
is not squarefree.

David A. Cox (Amherst College) Gröbner Bases EACA 2012, Alcalá 22 / 42



Some Radical Modular Lattices

Theorem (Ene and Hibi)
The ideal ILk

is radical.
xk

xk +1
yk

yk +1

z

Proof.
Step 1: Write down a Gröbner basis of I = ILk

. The basis includes
y2

k z − yk z2 and xk+1z − yk z.

Step 2: Prove that I = 〈I, xk+1 − yk 〉 ∩ 〈I, z〉 using Gröbner bases.

Step 3: Prove that 〈I, xk+1 − yk 〉 and 〈I, z〉 have squarefree initial
ideals.

Since ideals with squarefree initial ideals are radical, the theorem
follows from Steps 2 and 3.

Note that the initial ideal of ILk
is not squarefree.

David A. Cox (Amherst College) Gröbner Bases EACA 2012, Alcalá 22 / 42



Some Radical Modular Lattices

Theorem (Ene and Hibi)
The ideal ILk

is radical.
xk

xk +1
yk

yk +1

z

Proof.
Step 1: Write down a Gröbner basis of I = ILk

. The basis includes
y2

k z − yk z2 and xk+1z − yk z.

Step 2: Prove that I = 〈I, xk+1 − yk 〉 ∩ 〈I, z〉 using Gröbner bases.

Step 3: Prove that 〈I, xk+1 − yk 〉 and 〈I, z〉 have squarefree initial
ideals.

Since ideals with squarefree initial ideals are radical, the theorem
follows from Steps 2 and 3.

Note that the initial ideal of ILk
is not squarefree.

David A. Cox (Amherst College) Gröbner Bases EACA 2012, Alcalá 22 / 42



References

References
T. Hibi, Distributive lattices, affine semigroup rings and algebras
with straightening laws, in Commutative Algebra and
Combinatorics (Kyoto, 1985), North-Holland, Amsterdam, 1987,
93–109,

A. Qureshi, Indespensible Hibi relations and Gröbner bases,
arXiv:math.CA/1203.0438.

V. Ene and T. Hibi, The join-meet ideal of a finite lattice,
arXiv:math.AC/1203.6794.

David A. Cox (Amherst College) Gröbner Bases EACA 2012, Alcalá 23 / 42



Snapshot #3: The Nullstellensatz

There are many proofs of the Nullstellensatz. Here we present a proof
due to Lev Glebsky that uses Gröbner bases.

Notation
k [u,x ], x = (x1, . . . , xn−1), is a polynomial ring in n variables.

a ∈ k gives the evaluation map eva : k [u,x ]→ k [x ] defined by
eva(p) = p(a,x).

Theorem
Let k be an algebraically closed field and let I ( k [u,x ] be an ideal.
Then there is a ∈ k such that eva(I) ( k [x ].

Applying this theorem repeatedly, we can find a1, . . . ,an ∈ k with
eva1,...,an(I) ( k , hence eva1,...,an(I) = {0}. It follows that V(I) 6= ∅. This
in turn implies the Nullstellensatz.
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Case I

Assume I ∩ k [u] = 〈p〉, p 6= 0. Then p is nonconstant since I is a
proper ideal.

Write p =
∏r

i=1(u − ai)
mi . Then

I = 〈p〉+ I =
⋂r

i=1

(

〈u − ai〉
mi + I

)

,

so that 〈u − ai〉
mi + I is proper for some index i .

Observe that

〈u − ai〉
mi + I ⊆ 〈u − ai〉+ I ⊆

√

〈u − ai〉mi + I.

Hence 〈u − ai〉+ I is also a proper ideal.

It follows easily that evai (I) ( k [x ].
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Case II

This is where we use Gröbner bases.

Assume I ∩ k [u] = {0}. This easily implies that

J := ideal of k(u)[x ] generated by I

is a proper ideal of k(u)[x ].

Let G be a reduced Gröbner basis of J. Elements of G are
polynomials in x with coefficients in k(u). Let h ∈ k [u] be the
LCM of all denominators of the coefficients of elements of G.

Since k is infinite, we can pick a ∈ k such that h(a) 6= 0.

Let Ra = {f/g ∈ k(u) | f ,g ∈ k [u], g(a) 6= 0}. Then the evaluation
map eva : k [u,x ] = k [u][x ]→ k [x ] extends to an evaluation map

eva : Ra[x ] −→ k [x ]
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map eva : k [u,x ] = k [u][x ]→ k [x ] extends to an evaluation map

eva : Ra[x ] −→ k [x ]
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Case II, Continued

Lemma
eva(G) is a Gröbner basis in k [x ].

Proof.
Exercise!

Since G is a Gröbner basis of a proper ideal J ⊆ k(x)[x ], none of
its elements lie in k(u). Hence no elements of eva(G) lie in k .
Then 〈eva(G)〉 is proper in k [x ] since eva(G) is a Gröbner basis.
Applying the division algorithm to I ⊆ J = 〈G〉 shows that
eva(I) ⊆ 〈eva(G)〉. Hence eva(I) is a proper ideal of k [x ]. QED

Reference
L. Glebsky, A proof of Hilbert’s Nullstellensatz based on Groebner
bases, arXiv:math.AC/1204.3128.
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Snapshot #4: Geometric Theorem Discovery

Our final topic involves an application of comprehensive Gröbner
systems to the problem of discovering the correct hypotheses that give
an interesting theorem in geometry.

Our discussion was inspired by a 2007 paper of Montes and Recio.

We begin with a 2006 example of Sato and Suzuki that illustrates
specialization of Gröbner bases.
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Example 1

Consider the ideal

I := 〈(u − 1)x1 + x2
2 ,ux2 + u〉 ⊆ k [u,x ] = k [u, x1, x2].

As in our discussion of the Nullstellensatz, I generates the ideal

J =
〈

x1 +
x2

2

u − 1
, x2 + 1

〉

⊂ k(u)[x ] = k(u)[x1, x2].

The generators G of J are a lex Gröbner basis for x1 > x2.

We will write ga = eva(g) = g(a,x) for a ∈ k and g ∈ k [u,x ]. The
previous lemma implies that when a 6= 1, Ga is a Gröbner basis in
k [x ]. This is a simple example of specialization of Gröbner bases.

To make things more interesting, we go back to I, whose lex Gröbner
basis for x1 > x2 > u is

{ux1 − x1 + x2
2 ,ux2 + u, x1x2 + x1 − x3

2 − x2
2}

There are two questions to ask about this situation.
David A. Cox (Amherst College) Gröbner Bases EACA 2012, Alcalá 29 / 42



First Question

We will think of u as a parameter in A1.

Does G = {ux1 − x1 + x2
2 , ux2 + u, x1x2 + x1 − x3

2 − x2
2} remain a

Gröbner basis (for lex with x1 > x2) when the parameter u is given a
specific numerical value a ∈ A1?

Two observations:

If u = 1, then G1 = {x2
2 , x2 + 1, x1x2 + x1 − x3

2 − x2
2}, which

generates 〈1〉. Since 1 /∈ 〈x2
2 , x2, x1x2〉, G1 is not a Gröbner basis.

If u = a 6= 0,1, then one can show that Ga is a reduced Gröbner
basis (up to constants).

General Question: How do Gröbner bases specialize?
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Second Question

Consider the systems of equations:

(u − 1)x1 + x2
2 = ux2 + u = 0.

How does the number of solutions change as we vary u ∈ A1?

u = a 6= 0,1⇒ (a − 1)x1 + x2
2 = x2 + 1 = 0 has a unique solution.

u = 0⇒ −x1 + x2
2 = 0 has infinitely many solutions.

u = 1⇒ x2
2 = x2 + 1 = 0 has no solutions.

General Question: How do we describe the number of solutions?
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Answers for the Example

Consider the following pairs:

(S1,G1) :=
(

A1 \ {0,1}, {(u − 1)x1 + x2
2 ,ux2 + x}

)

(S2,G2) :=
(

{0}, {x1 − x2
2}

)

(S3,G3) :=
(

{1}, {1}
)

.

The Si are called segments. Note that:

Si is constructible, S1 ∪ S2 ∪ S3 = A1 is a partition.

For a ∈ Si , Gi a is a reduced Gröbner basis (up to constants).

For a ∈ Si , 〈LT(Gi a)〉 is independent of a.

〈LT(G1a)〉 = 〈x1, x2〉, 〈LT(G2a)〉 = 〈x1〉, 〈LT(G3a)〉 = 〈1〉 gives the
number of solutions.

This is a minimal canonical comprehensive Gröbner system.
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MCCGS

Let I ⊆ k [u ,x ] be an ideal with variables x = (x1, . . . , xn) and
parameters u = (u1, . . . ,um). Fix an order > on k [x ].

Definition
A minimal canonical comprehensive Gröbner system for I and >
consists of pairs (Si ,Gi) satisfying:

The segments Si give a constructible partition of Am.

For a ∈ Si , setting u = a gives a reduced Gröbner basis Gia (up
to constants).

For a ∈ Si , 〈LT(Gia )〉 is independent of a .

No smaller partition exists with these properties.

This definition is due to Manubens and Montes in 2009.
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A False Theorem

Let CD be the diameter of a
circle of radius 1. Fix A. Then:

• The line
←→
AE is tangent to the

circle at E .

• The lines
←→
AC and

←→
ED meet at F .

False Theorem
AE = AF .

Challenge: Discover reasonable
hypotheses on A to make the
theorem true.

A

C D
O

E

F
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Hypotheses

Set A = (u1,u2)
E = (x1, x2)
F = (x3, x4).

Then:

•
←→
AE ⊥

←→
OE gives

h1 := (x1 − u1)(x1 − 1) + (x2 − u2)x2.

• OE = 1 gives

h2 := (x1 − 1)2 + x2
2 − 1.

• F =
←→
AC

⋂ ←→
ED gives

h3 := u1x4 − u2x3.

h4 := x4(x1 − 2)− x2(x3 − 2).

A

C D
O

E

F
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More Hypotheses

We also need to assume:

• A 6= C, so

u1 6= 0 or u2 6= 0.

• E 6= D, so

x2 6= 2.

Conclusion: The ideal that
describes this problem is the
saturation

I := 〈h1,h2,h3,h4〉 : 〈(x2 − 2)u1, (x2 − 2)u2〉
∞

in the ring k [u1,u2, x1, x2, x3, x4].

A

C D
O

E

F
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Strategy

Our false theorem asserts AE = AF . This gives

g := (u1 − x1)
2 + (u2 − x2)

2 − (u1 − x3)
2 − (u2 − x4)

2.

Strategy
Compute a MCCGS for the ideal

I + 〈g〉 ⊆ k [u1,u2, x1, x2, x3, x4], u1,u2 parameters.

Intuition

The false theorem is true for those u = a ∈ A2 for which

∅ 6= V(̄Ia + 〈ḡa 〉) ⊆ A4.
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The MCCGS

The MCCGS for I + 〈g〉 ⊆ k [u1,u2, x1, x2, x3, x4] under lex order with
x1 > x2 > x3 > x4 is

(S1,G1) ∪ · · · ∪ (S6,G6)

The Si and Leading Terms

i Si LT(Gia )

1 A2 \
(

V(u2
1 + u2

2 − 2u1) ∪ V(u1)
)

1

2 V(u2
1 + u2

2 − 2u1) \ {(0,0), (2,0)} x1, x2, x3, x2
4

3 V(u1) \ {(0,0), (0,±i)} x1, x2, x3, x2
4

4 {(0,±i)} x1, x2, x3, x4

5 {(2,0)} x1, x2
2 , x3, x2

4

6 {(0,0)} x1, x2, x2
3 , x

2
4
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The MCCGS

The MCCGS for I + 〈g〉 ⊆ k [u1,u2, x1, x2, x3, x4] under lex order with
x1 > x2 > x3 > x4 is

(S1,G1) ∪ · · · ∪ (S6,G6)

The Si and Leading Terms

i Si LT(Gia )

1 A2 \
(

V(u2
1 + u2

2 − 2u1) ∪ V(u1)
)

1

2 V(u2
1 + u2

2 − 2u1) \ {(0,0), (2,0)} x1, x2, x3, x2
4

3 V(u1) \ {(0,0), (0,±i)} x1, x2, x3, x2
4

4 {(0,±i)} x1, x2, x3, x4

5 {(2,0)} x1, x2
2 , x3, x2

4

6 {(0,0)} x1, x2, x2
3 , x

2
4
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Consequences of the MCCGS

We can ignore

S4 = {(0,±i)}, S5 = {(2,0)}, S6 = {(0,0)}.

The first is not real, and the second and third are impossible since
E 6= D and A 6= C.

G1 = {1} on S1 = A2 \
(

V(u2
1 + u2

2 − 2u1) ∪ V(u1)
)

implies

V(I + 〈g〉) = ∅ if u = a /∈ V(u2
1 + u2

2 − 2u1) ∪ V(u1).

Hence the “false theorem” AE = AF (i.e., g = 0) cannot follow
from our hypotheses (i.e., the ideal I) unless the point A comes
from V(u2

1 + u2
2 − 2u1) ∪ V(u1).

This holds⇔ A is on the circle or the tangent at C.
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Conclusion

A

C D
O

E

F In order for AE = AF , we must have

“A is on the circle or the tangent at C”

This is detected by the remaining
segments of the MCCGS:

A on the circle: S2 =
V(u2

1 + u2
2 − 2u1) \ {(0,0), (2,0)}

A on the tangent: S3 =
V(u1) \ {(0,0), (0,±i)}

A on the Circle
AE = AF is true but boring.
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Conclusion

A

C D
O

E

F In order for AE = AF , we must have

“A is on the circle or the tangent at C”

This is detected by the remaining
segments of the MCCGS:

A on the circle: S2 =
V(u2

1 + u2
2 − 2u1) \ {(0,0), (2,0)}

A on the tangent: S3 =
V(u1) \ {(0,0), (0,±i)}

A on the Circle
AE = AF is true but boring.

A = E = F

C D
O

David A. Cox (Amherst College) Gröbner Bases EACA 2012, Alcalá 40 / 42



A on the Tangent

When A is on the tangent,
we get the picture to the right.

There are two choices for E :

• For E1, we get
F1 = E1, so AE = AF
is true but boring.

• For E2, we get an
interesting theorem!

This is automatic theorem
discovery using MCCGS.

A

C D
O

E2

F2

F1 = E1 = 

A

C D
O

E

F
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