Errata for Applications of Polynomial Systems May 15, 2025

Page 8, line -2: "1892" should be "1907"

Page 47: Starting from the line following (2.2) to the line before **Numerical Algebraic Geometry**, there are multiple errors. This material needs to be replaced with the following:

For c = 2.1 = 21/10 and c = 2.01 = 201/100, a lex Gröbner basis with $\lambda > x > y > z$ still consists of eight polynomials, where $g_8 = g_8(z)$ eliminates all variables but z. A surprise is that g_8 has degree 11 for these new values of c, while g_8 had degree 7 for c = 2. The following table shows the roots of g_8 for c = 2, 2.1, 2.01 to four decimal places:

С	first seven roots of g_8			four new roots
2	0 ± 1	$\pm 2/3$	$\pm\sqrt{11}/(8\sqrt{2})$	
		$= \pm .6667$	$= \pm .2932$	
2.1	0 ±1	$\pm .6696$	$\pm .3088$	$\pm 5.0187\sqrt{-1}, \ \pm .9965$
2.01	0 ± 1	$\pm .6671$	$\pm .2948$	$\pm 47.5737\sqrt{-1}, \pm .999957$

As $c \to 2$, the first seven roots approach the exact values found when c = 2, while the two imaginary new roots approach ∞ (2.01 is ten times closer to 2 than 2.1, and the new roots are correspondingly ten times larger). The two real new roots approach ± 1 very rapidly.

For the whole system (2.2), there are 14 solutions when c = 2.1 or 2.01. Two of these go to ∞ as $c \to 2$. Furthermore, the solutions with $z = \pm 1$ coalesce with two new solutions whose z coordinates approach ± 1 . This analysis reveals that the original system (2.1) has solutions at ∞ and that the solutions with $z = \pm 1$ have multiplicity 2.

Page 187, fourth display: " $S + I \xrightarrow{\alpha} I \xrightarrow{\beta} R$ " should be " $S + I \xrightarrow{\alpha} 2I$, $I \xrightarrow{\beta} R$ "

Page 211, line -15: "interpreted" should be "interpreted"

Page 227, entry [45]: The entry should end with a period, not a comma.

Page 237, entry [281]: "1909" should be "1907".